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Abstract. Recently, we have proposed a design method of approximate state feedback
linearization making the approximation term small. The aim of this paper is to expand
the scope of that method to a wide class of nonlinear systems, namely multivariable
nonlinear systems. In our procedure, we show first the problem formulation in order
to specify the class of nonlinear systems under consideration. Then, we settle a state
transformation matrix in order to transform the nonlinear system into an approximately
controllable canonical form of Multiple-Input/Multiple-Output (MIMO) systems. After
that, we explain the state feedback gain design and use a standard nonlinear linearization
method. That makes the MIMO system become linear in the new coordinate. Then, for
the resulting linear MIMO system, it becomes easy to apply the well established linear
control techniques to stabilizing the transformed system.
Keywords: Nonlinear control, Feedback linearization, Approximate linearization, Co-
ordinate transformation, Multiple-input/multiple-output systems

1. Introduction. There exist a lot of tools to deal with linear systems. However, in
the real world, most systems are nonlinear. That makes the linearization of nonlinear
systems a paramount control problem that has attracted the attention of many scientists
and engineers. So far, several linearization methods have been proposed for nonlinear
systems. The exact feedback linearization [1, 2, 3] is based on coordinate transformation
and nonlinear feedback control, and is adequate for nonlinear systems with a wide range
of action. This method is effectively applied to robotics systems especially such as robotic
manipulators [4], however, is limited to some kind of plants. In fact, it has been shown
that for nonlinear systems of first and second order this method is straightforward [1], but
for higher-order systems, it is tricky to apply this method. This motivates us to study
the approximate linearization [5, 6] which can be applied to the higher-order nonlinear
systems systematically. The common approach for the approximate linearization employs
Taylor series expansions [1, 2, 3, 7]. This method is suitable for nonlinear systems with a
narrow range of action. However, it is not quite appropriate for nonlinear systems having
a wide range of action. In contrast, Yamada and Yuzawa [8] proposed an alternative
approximate feedback linearization method by combining coordinate transformation and
nonlinear feedback control. That method can be applied to various nonlinear systems to
which the exact linearization method cannot be applied. Recently, we have expanded the
method in [8] by proposing a design method of approximate state feedback linearization
which makes the approximation term smaller [9]. However, that method is limited to
single input systems.
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In this work, we expand the procedure in [9] considering an MIMO nonlinear system. In
our approach, we settle first a state transformation matrix in order to transform approxi-
mately the nonlinear system into a controllable canonical form. After that, we explain the
design method of the nonlinear state feedback control input making the approximation
term small, and use a standard nonlinear linearization method to linearize the nonlinear
MIMO system.
This paper is organized as follows. In Section 2, we show the problem formulation in

order to specify the class of nonlinear systems under consideration. In Section 3, we ex-
plain the approximate feedback linearization method where we state first the coordinates
transformation and then clarify the design of the stabilizing state feedback control. In
Section 4, we give concluding remarks.

2. Problem Formulation. Consider the nonlinear system of the form:

ẋ = A(x)x+B(x)u, (1)

where x ∈ Rn is the state variable, u ∈ Rm is the control input, A(x), and B(x) are ma-
trices depending on the state variable with proper dimensions. Without loss of generality,
the origin x = 0 is the equilibrium point. It is assumed that all the elements of A(0) and
B(0) are finite and

rank
[
B(x) A(x)B(x) · · · An−1(x)B(x)

]
= n (2)

holds in the neighborhood of x = 0.
In this paper, we expand the result in [9] by proposing a design method of an approxi-

mate feedback linearization for MIMO nonlinear systems.

3. Approximate State Feedback Linearization.

3.1. Transformation into MIMO controllable canonical form. As it is easy to
design a control law for canonical form, our focus in this section is to transform the
MIMO nonlinear system into a controllable canonical form. First, a state transformation
matrix is determined, and then, the nonlinear system is divided into the controllable
canonical section and the remainder.
We adopt the coordinates transformation written as:

x = T (x)z. (3)

T (x) is designed as follows: From the assumption of (2), there exist n independent column
vectors in [

B(x) A(x)B(x) · · · An−1(x)B(x)
]
.

B(x) =
[
b1(x) b2(x) · · · bm(x)

]
.

Let integer νi (i = 1, . . . ,m) be

νi ≡ min
{
j : Aj(x)bi(x) ∈ span

[
B(x), A(x)B(x), . . . , Aj−1(x)B(x),

Aj(x)b1(x), . . . , A
j(x)bi−1(x)

]}
. (4)

Then we have

rank
[
b1(x) A(x)b1(x) · · · Aν1−1(x)b1(x) b2(x) · · · Aν2−1(x)b2(x) · · ·

Aνm−1(x)bm(x)
]
= n, (5)

since ν1 + ν2 + · · · + νm = n is satisfied. From the definition of νi, there exists αi
j,k(x)

satisfying

Aνi(x)bi(x) = αi
0,1(x)b1(x) + · · ·+ αi

0,m(x)bm(x) + αi
1,1(x)A(x)b1(x) + · · ·

+αi
1,m(x)A(x)bm(x) + · · ·+ αi

νi−1,1(x)A
νi−1(x)b1(x)
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+ · · ·+ αi
νi−1,m(x)A

νi−1(x)bm(x)

+αi
νi,1

(x)Aνi(x)b1(x) + · · ·+ αi
νi,i−1(x)A

νi(x)bi−1(x). (6)

We select

bi,j(x) =
m∑
k=1

αi
j,k(x)bk(x) (j = 0, . . . , νi−1), (7)

b̃i(x) =
i−1∑
k=1

αi
νi,k

(x)bk(x) (i = 2, . . . ,m), b̃1(x) = 0. (8)

Equation (6) is rewritten by

Aνi(x)bi(x) = bi,0(x) + A(x)bi,1(x) + · · ·+ Aνi−1(x)bi,νi−1(x) + Aνi(x)b̃i(x). (9)

ti,j(x) (j = 1, . . . , νi) is defined by

ti,j(x) = Aνi−j(x)
(
bi(x)− b̃i(x)

)
− bi,j(x)− A(x)bi,j+1(x)− · · ·

−Aνi−j−1(x)bi,νi−1(x). (10)

From the definition of νi,

rank
[
t1,1(x) · · · t1,νi(x) · · · tm,1(x) · · · tm,νm(x)

]
= n (11)

is satisfied. By simple manipulations, we find that the following relationships hold:

A(x)ti,j(x) = ti,j−1(x) + bi,j−1(x), j = 2, 3, . . . , νi (12)

A(x)ti,1(x) = bi,0(x). (13)

On the other hand, since ti,νi(x) = bi(x)− b̃i(x), using (8), there exist real numbers βj,i(x)
satisfying the following equation:

bi(x) = ti,νi(x) +
i−1∑
j=1

βj,i(x)tj,νj(x), i = 2, . . . ,m, b1(x) = t1,ν1(x). (14)

βj,i(x) is determined by αi
νi,k

(x). Substituting this relationship into (12), Equations (12)
and (13) can be written as follows:

A(x)ti,j(x) = ti,j−1(x) +
m∑
k=1

γk,i,j(x)tk,νk(x), j = 2, 3, . . . , νi, (15)

A(x)ti,1(x) =
m∑
k=1

γk,i,1(x)tk,νk(x). (16)

Here, γk,i,j(x) is a real number determined by αi
j,k(x).

We settle T (x) as:

T (x) =
[
T1(x) T2(x) · · · Tm(x)

]
, (17)

where

Ti(x) =
[
ti,1(x) ti,2(x) · · · ti,νi(x)

]
, i = 1, . . . ,m. (18)

We suppose that T (x) satifies the following condition:

det (T (x)) ̸= 0. (19)

Using T (x) in (17) and applying (3) to the system in (1), we have

ż = T−1(x)A(x)T (x)z + T−1(x)B(x)u− T−1(x)Ṫ (x)z

≡ Az(x)z +Bz(x)u− T−1(x)Ṫ (x)z, (20)
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where

Az(x) = T−1(x)A(x)T (x)

=


A1,1(x) A1,2(x) · · · A1,m(x)

A2,1(x) A2,2(x) · · · A2,m(x)

· · · · · ·
Am,1(x) Am,2(x) · · · Am,m(x)

 , (21)

Ai,i(x) =


0 1 0 · · · 0

0 0 1
...

...
...

...
. . .

0 0 0 · · · 1
γi,i,1(x) γi,i,2(x) γi,i,3(x) · · · γi,i,νi(x)

 ∈ Rνi×νi , (22)

Ai,j(x) =


0 0 · · · 0

· · · · · ·
0 0 · · · 0

γi,j,1(x) γi,j,2(x) · · · γi,j,νj(x)

 ∈ Rνi×νj , (23)

Bz(x) = T−1(x)B(x) =


B1,1(x) B1,2(x) · · · B1,m(x)

B2,1(x) B2,2(x) · · · B2,m(x)

· · · · · ·
Bm,1(x) Bm,2(x) · · · Bm,m(x)

 , (24)

Bi,i(x) =


0
...
0
1

 ∈ Rνi , Bi,j(x) =


0
...
0

βi,j(x)

 ∈ Rνi (i < j), and

Bi,j(x) =

 0
...
0

 ∈ Rνi (i > j). (25)

From (20), we find that the nonlinear system is divided into the controllable canonical
section and the remainder T−1(x)Ṫ (x)z. Let us write T−1(x)Ṫ (x) as:

T−1(x)Ṫ (x) =

 ω11(x) · · · ω1n(x)
...

. . .
...

ωn1(x) · · · ωnn(x)

 = Ω(x) = Ω̃(x) + Ω̄(x). (26)

Ω̃(x) is the matrix extracting the (ν1 + · · · + νi)-th rows of Ω(x) and Ω̄(x) is the matrix
having 0 at the (ν1 + · · · + νi)-th rows, and the same elements as Ω(x) elsewhere, i =
1, . . . ,m.

3.2. Nonlinear feedback linearization. In this section, a standard nonlinear feedback
linearization is used to transform the controllable canonical form into a linear system.
The control input u in (1) is settled as

u = −F (x)z +G(x)v. (27)

Now, from (26) and (27), the system in (20) is written as:

ż =
{
Az(x)−Bz(x)F (x)− Ω̃(x)

}
z +Bz(x)G(x)v − Ω̄(x)z, (28)
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where F (x) acts as the linearization feedback law to make Az(x) − Bz(x)F (x) − Ω̃(x) a
linear matrix and v is an external signal. F (x) is designed by

F (x) = −L(x) + q(x)k, (29)

where

k =
[
ξ0 · · · ξn−1

]
∈ R1×n, (i = 1, . . . , n− 1) (30)

L(x) =

 l1(x)
...

lm(x)

 ∈ Rm×n, q(x) =

 q1(x)
...

qm(x)

 ∈ Rm×1, (31)



li(x) = ẽi − ãi(x) + ω̃i(x)−
m∑

j=i+1

βi,j(x)lj(x) (i = 1, 2, . . . ,m− 1)

lm(x) = −ãm(x) + ω̃m(x)

qi(x) = −
m∑

j=i+1

βi,j(x)qj(x) (i = 1, 2, . . . ,m− 1)

qm(x) = 1

, (32)

ẽi(x) =
[
0 · · · 0 1 0 · · · 0

]
∈ R1×n. (33)

↑
ν1 + · · ·+ νi + 1

ẽi(x) is a row matrix having 1 at the (ν1 + · · ·+ νi + 1)-th column and 0 elsewhere. ãi(x)
and ω̃i(x) are the (ν1+ · · ·+νi)-th row, (i = 1, . . . ,m), of respectively the matrix Az(x) in
(20) and the matrix Ω̃(x) in (26). From (29), the system in (28) gets the following form:

ż =
{
Az(x) +Bz(x)L(x)−Bz(x)q(x)k − Ω̃(x)

}
z +Bz(x)G(x)v − Ω̄(x)z, (34)

where

Bz(x)q(x) =
[
0 · · · 1

]T
and Bz(x)q(x)k =


0 · · · 0 · · · 0

0
...

...
...

...
. . .

0 0 0 · · · 0
ξ0 ξ1 ξ2 · · · ξn−1

 . (35)

Next, we give a design method of G(x) to make Bz(x)G(x) be a linear matrix. G(x) is
rewritten in the block matrix form with the same form as Bz(x) by

G(x) =


G1,1(x) G1,2(x) · · · G1,m(x)
G2,1(x) G2,2(x) · · · G2,m(x)

· · · · · ·
Gm,1(x) Gm,2(x) · · · Gm,m(x)

 . (36)

This yields the i-th colum and j-th row block matrix of Bz(x)G(x), which is written as
m∑
k=i

Bi,k(x)Gk,j(x), (i, j = 1, 2, . . . ,m). (37)

Gi,j is selected sequentially by starting from the last row m to the first row 1 according
to the formulas below:

Gm,j(x) = δm,j (j = 1, 2, . . . ,m)

Gi,j(x) = −
m∑

k=i+1

βi,k(x)Gk,j(x) + δi,j (i = 1, 2, . . . ,m− 1; j = 1, 2, . . . ,m) (38)
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where δi,j are arbitrary real numbers (i, j = 1, 2, . . . ,m). Applying (27) into (20), we have

ż = Āzz + B̄zv − Ω̄(x)z, (39)

where

Āz = Az(x)−Bz(x) (−L(x) + q(x)k)− Ω̃(x)

=


0 1 0 · · · 0

0 0 1
...

...
...

...
. . .

0 0 0 · · · 1
−ξ0 −ξ1 −ξ2 · · · −ξn−1

 ∈ Rn×n, (40)

B̄z = Bz(x)G(x) =


H1,1 H1,2 · · · H1,m

H2,1 H2,2 · · · H2,m

· · · · · ·
Hm,1 Hm,2 · · · Hm,m

 , Hi,j =


0
...
0
δi,j

 ∈ Rνi . (41)

We adopt the approximation as Ω̄(x) ≃ 0, ∀t, x. Thus, the nonlinear system becomes

ż =


0 1 0 · · · 0
...

. . . . . .
...
0
1

−ξ0 −ξ1 · · · −ξn−1

 z +


H1,1 H1,2 · · · H1,m

H2,1 H2,2 · · · H2,m

· · · · · ·
Hm,1 Hm,2 · · · Hm,m

 v. (42)

The system obtained is obviously a linear system. Now, we can settle the numbers ξi
(i = 0, . . . , n− 1) in order to have all the roots of the characteristic polynomial

sn + ξn−1s
n−1 + · · ·+ ξ0 = 0 (43)

of the obtained linear system to be in the open left half plane. In this way, the obtained
linear system in (42) will be asymptotically stable.

4. Conclusion. We have proposed through this paper a design method of approximate
linearization for multi-input nonlinear systems. In our procedure, first a state transfor-
mation matrix is determined such that the nominal nonlinear system is transformed into
the controllable canonical form and the remainder. Second, a design method of nonlinear
state feedback has been proposed. After making the approximation on the remainder
which has been reduced by the state feedback law, the nonlinear system is transformed
into a linear system in the controllable canonical form. This method can be applied to
the nonlinear systems to which the exact linearization method cannot be applied. Such
potential applications include inverted pendulums [10], ball-and-beam systems [11], fuel
cells [12], and bio-reactors [13]. As the present paper proposed the approximate method,
future study may establish methods of estimating nonlinear stability [14, 15], which pre-
determine that if the linearized system is stable, then the original nonlinear system is also
stable.
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