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Abstract. This paper demonstrates the use of classification scheme based on Cellu-
lar Automata (CA) on motor-imaginary Electroencephalogram (EEG) signal to identify
different brain-states. In Brain-Computer Interface (BCI), imagination or thought of a
limb movement is known as motor imagery. It generates brain signals which are similar
to the actual limb movements. A popular non-invasive method to record brain activity
is electroencephalography. The recorded micro-voltage signals are called electroencephalo-
gram. Over the years, researchers have shown that Multiple Attractor Cellular Automata
(MACA) has the inherent ability to act as a k-class natural pattern classifier. In this
paper, we introduce an MACA-based classifier to classify motor-imagery of limb move-
ments into left-hand and right-hand movements. The raw EEG signal is first filtered
using an elliptic bandpass filter to eliminate different artifacts (noise). Then the follow-
ing feature extraction techniques are used: Wavelet-based Energy and Entropy (Eng-Ent),
Band Power (BP), and Adaptive Auto-Regressive (AAR). Besides the proposed classifier
scheme, we also examine Support Vector Machine (SVM) and several ensemble classi-
fier variants as baseline models. Experiments are done using hold-out method as well
as 10-fold cross-validation. The empirical results indicate that the MACA-based pat-
tern classifier outperforms the other alternatives in each cases, i.e., hold-out as well as
cross-validation. Our proposed MACA-based pattern classifier combined with band power
features gives us 91.16% classification accuracy in 10-fold cross-validation. It is, to the
best of our knowledge, the highest performance for the BCI Competition II Dataset III
(2003) till date.
Keywords: BCI, Brain-state, Cellular automata, MACA, Classifier, EEG, Motor-
imagery

1. Introduction. Classification of different brain-states is an essential part of any Brain-
Computer Interface (BCI) systems. Based on different brain functionalities, different brain
regions are activated and thousands of neurons have been triggered. Due to this neuron
activities specific brain waves are generated [1]. One of the popular ways of recording the
brain waves is called electroencephalography and the micro-volt electrical signal is known
as Electroencephalogram (EEG). Brain-states vary with time, sense and action. Different
emotions, cerebral activities or mere imagination cause different brain-states [2, 3]. If a
person is thinking or imagining of his/her limb movements while in reality he/she is not
performing the movements, in BCI paradigm, it is known as “motor-imagery”.

Researchers have been using different feature extraction techniques to generate feature-
sets and classifiers to discriminate different brain-states. However, it is found that the best
combination of feature extraction and classifier has yet not been achieved. It motivates us
to explore new combinations. From our past research, we have concluded that the Adap-
tive Auto-Regressive (AAR), Band Power (BP), and Wavelet-based Energy and Entropy
(Eng-Ent) based features perform consistently well irrespective of different classifiers. In
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this paper, we have introduced a Cellular Automata (CA)-based classifier to discriminate
different brain-states, specifically, motor-imagery EEG signal-based left-hand and right-
hand movements [4, 5, 6, 7]. We have also compared the proposed scheme with several
baseline classification methods to examine its robustness and consistency [9, 10]. Experi-
mental results show that the proposed scheme achieves state-of-the-art performance.
The paper has been divided into six sections. In Section 2, the necessary theoretical

aspects are discussed. Section 3 explains the proposed CA-based classifier. The experi-
mental set-up is provided in Section 4. In Section 5, the results are analyzed and plotted
for visualization. Finally, the paper concludes in Section 6.

2. Theoretical Preparation.

2.1. Feature extraction. In this step, from a given dataset, we identify the relevant
values of necessary information known as “features”. Suitable extraction methods are
important to determine in order to obtain the discriminant features. Here, we have used
Adaptive Auto-Regressive (AAR) parameters, Band Power (BP) and Discrete Wavelet
Transform (DWT) Energy-Entropy (Eng-Ent) features extraction techniques. Filtered
raw EEG signals are then transformed into a feature vector (also referred as feature-set).
The details of AAR, BP and energy entropy can be found in [11, 12, 13].
The order of autoregressive model is indicated by p. In this paper, the RLS (Recursive

Least Square) version of AR models has been used for feature extraction. As the value
of p is equal to 6 per electrode, 12 features are extracted using the AAR technique. The
total percentage of power presented in a fixed frequency interval is computed in band
power [2, 16]. All the brain rhythms have been considered for band power feature-set
computation. These are: Delta (< 4 Hz), Theta (4-7 Hz), Alpha (7-13 Hz), Beta (13-25
Hz), and Gamma (> 25 Hz) [1, 17]. As per our previous research, it has been observed that
for EEG based motor-imagery classification, the wavelet-based energy-entropy method is
best suited for classification problem [13, 18, 19] .
Wavelet is a rapidly decaying wavelike oscillation that has zero-mean. Unlike a sinusoid

which extends to infinity, it has a finite duration. Discrete Wavelet Transform (DWT) has
been used in this paper to extract energy and entropy features. Here, the input signal has
been decomposed three times to its 3rd level. The Daubechies (db) basis function with
filter size 4 and third level detail coefficientsD3 are used to extract features from the input
EEG signal [19]. DWT is ideal for downsizing the actual input signal while retaining the
properties of the original signal with fewer coefficients. Again, we have performed another
step to reduce the dimension of the obtained wavelet energy and entropy [18, 19, 20, 21].
In our study, the size obtained from AAR, BP and Eng-Ent are respectively 12, 10

and 4.

2.2. Classification. Different techniques are used for data classification and categoriza-
tion. A model can be built, only after mapping (training) the obtained class labels in the
feature space. Two disjoint sets are formed by splitting the dataset used in classification.
The same are referred as training-set and test-set, known as the hold-out technique.

3. Designing of MACA-Based Pattern Classifier. Let us consider Table 1. There
are four point state attractors in MACA of Table 1, further in this paper all CA belong to
MACA type, and MACA and CA are used interchangeably. Each attractor, representing
each basin, can identify unique memory location. An input pattern traverses through the
basin and reaches the attractor state, which identifies class of the pattern. A CA can be
used as k-class natural classifier, based on following two facts:

• Necessary Condition: Each point state attractor, representing a class, must identify
a pattern Pi from set of patterns to be learnt {P1,P2, . . . ,Pm};
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• Sufficient Condition: An attractor is said to represent a Class XYZ if it identifies
maximum pattern from pattern set XYZ compared to other pattern sets.

A CA can represent maximum k number of classes, if it has k number of attractors. A
CA having k number of attractors may represent a less than or equal to k classes.

Table 1. RMTs of the CA ⟨8, 203, 255, 65⟩ cell rules

Present state: 111 110 101 100 011 010 001 000
Rule

(RMT) (7) (6) (5) (4) (3) (2) (1) (0)
(i) Next State: d d d d 1 0 0 0 8
(ii) Next State: 1 1 0 0 1 0 1 1 203
(iii) Next State: 1 1 1 1 1 1 1 1 255
(iv) Next State: d 1 d 0 d 0 d 1 65

In this work, we target the design of a 2-class pattern classifier. As in classification task,
two datasets are given to each class. All patterns are converted to binary strings. For n-
length converted binary data, we have to generate n-cell CA. Next, attractors are marked
according to the maximum number of patterns it identifies from each class. If certain
attractor identifies more number of patterns from Class I, then that attractor is said to
be represented of Class I, otherwise, Class II. For the identification of a class of patterns,
the attractors, representing the classes, need to be stored in memory (see Figure 1). To
identify the class of an input pattern p, the CA is loaded with p and updated till it reaches
to an attractor. Then, from the attractor and the stored information, one can declare the
class of the pattern p. In Figure 1, the class of p is I. However, if there are more than two
attractors, then a set of attractors identifies a class.

0 1 1 0 0 1 1 1

0 0 1 1

0 1 0 1

1 0 0 00 0 0 00 1 0 0 1 0 1 0

1 0 0 10 0 0 1

0 0 1 0 1 1 0 0

1 1 1 0 1 1 1 1

1 0 1 1

1 1 0 1

CLASS I

CLASS II

Figure 1. CA based classification strategy

3.1. Training and testing. There are two phases in classification training and testing.
One set of data is given for training to the classifier. And the other set of data is given
for the test. The accuracy measured in test phase is final accuracy of the classifier. The
classifier is constructed using the patterns in the training set and next its performance is
evaluated with the test set.

3.1.1. Training. In training phase of CA based pattern classification, first a CA is identi-
fied which gives the highest accuracy. Then, the attractors of the CA are marked according
to the number of patterns identified by them. For example, Attractor Attr identifies p1
number of patterns from class I and p2 number of patterns from class II. If p1 > p2, then
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Attr represents Class I, otherwise Class II. To design 2-class classifier, we select those
CAs which have at least two point state attractors where the attractors represent each
class. Algorithm 2 and Algorithm 1 are proposed as training algorithms.

Accuracy =
#patterns properly classified

Total No. of patterns
× 100% (1)

Algorithm 1: Pattern classifier using NULL boundary CA
1: Input: n (Size of CA), dataset1, dataset2.
2: Output: Accuracy and n-cell CA ⟨R0,R1, . . . ,Rn−1⟩.
3: Generate CA having only point state attractor as described in [4].
4: Read data from data-sets from P1 and P2, Set Success ← 0.
5: Identify the attractors for each pattern from P1 (P2).
6: Identify and assign each attractor according to the number of patterns identified

from the patternsets.
7: Set Success←

∑
#patternscorrectlyidentified.

8: Set Accuracy ← Success
total number of pattern

× 100.

9: Return Accuracy, CA, training set of attractor of class 1 (class 2).

Algorithm 2: Training phase
1: Input: n (Size of CA), dataset1, dataset2.
2: Output: Accuracy and n-cell CA ⟨R0,R1, . . . ,Rn−1⟩.
3: Maxaccuracy ← 0.
4: Repeat
5: CALL ClassifierDesignPointStateAttractor( ) (Algorithm 1).
6: if Maxaccuracy < accuracy then
7: Set Maxaccuracy ← Accuracy .
8: end if
9: Rewrite FinalCA and SetofAttractor.
10: Until i = 0 to max iteration.

3.1.2. Testing. The final accuracy of classifier is obtained in testing phase. The CA ob-
tained from training phase is used to identify the patterns of each dataset. Then, it is
checked, whether identified pattern by the attractor and the represented class (as in train-
ing phase) of the attractor are same. If so, then it will be accounted as attractor identified
correct pattern; otherwise not. Say Ai ∈ AtrSet1 but identifies as pattern from dataset2
then it is assumed that the pattern is not correctly identified. Algorithm 3 represents the
test phase. To Algorithm 3 input the CA size (n) along with ⟨R0,R1, . . . ,Rn−1⟩ generat-
ed by Algorithm 2, two datasets and two attractor sets. If any pattern is identified by an
attractor such that no match exists in both attractor sets, then we use hamming distance.
That is, say a pattern p ∈ dataset1 is identified by an attractor Atr. Say Atr /∈ AtrSet1
and Atr /∈ AtrSet2. So, hamming distance between Atr and all attractors from both
the attractor sets is measured, in Algorithm 3 the variable hd stores the value (hamming
distance). If it is found that hd is greater than

⌈
n
2

⌉
with respect to attractor set AtrSet1,

then it is counted as attractor of AtrSet2, otherwise AtrSet1. Hence, if hd is less than⌈
n
2

⌉
then we say that the pattern is identified correctly. The output of Algorithm 3 is

accuracy, i.e., percentage of total correctly identified pattern with respect to number of
total patterns.
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Algorithm 3: Test phase
1: Input: n (Size of CA), dataset1, dataset2, and n-cell CA ⟨R0,R1, . . . ,Rn−1⟩,

AtrSet1, AtrSet2.
2: Output: Accuracy.
3: Read patterns from dataset1 (resp. dataset2) and store to pattern set P1 (resp.

pattern set P2).
4: Success ← 0.
5: Repeat
6: Identify the attractor atri for pi.
7: if atri ∈ AtrSet1 then
8: set success ← success + 1.
9: end if
10: if ((atri /∈ AtrSet1 ) & (atri /∈ AtrSet2 )) then
11: Set hd ← Hamming Distance (atri, Aj), where Aj is any attractor within AtrSet1 .
12: if hd < ⌈(n

2
)⌉ then

13: Until pattern pi ∈ P1.
14: Set success ← success + 1.
15: end if
16: end if
17: Until pattern pi ∈ P2 and attractor set AtrSet1 replaced by AtrSet2
18: Rewrite FinalCA and SetofAttractor.
19: Set accuracy = success

P1+P2
.

20: Report Accuracy.

3.1.3. Complexity analysis of algorithms. The execution of Step 5 and Step 6 of Algo-
rithm 1 depends on the number of patterns (m), and rest of the steps execute only once.
Hence, Algorithm 1 is O(m). Algorithm 2 calls Algorithm 1 for m (any positive integer)
times which has time complexity O(n) and remaining statements are O(1). Hence, time
complexity of Algorithm 1 is O(m×n). Algorithm 3 depends on Step 3, which has linear
growth; hence it has also time complexity O(n).

4. Experimental Preparation.

4.1. Dataset. The EEG dataset used in this paper is Dataset III of BCI Competition
II (2003) taken from the Department of Medical Informatics, Institute for Biomedical
Engineering, University of Technology, Graz [22]. The recommended sampling frequency
is at 128 Hz. We have considered data only from the C3 and C4 electrodes as they are
directly responsible for human left and right hand movements. More relevant information
is available in [1, 23].

The whole dataset contains total 280 trials (that is, instances) having equal number
trials of left and right hand movements. The first 140 trials are used for training-set and
kept the remaining 140 trials for test-set. To eliminate the noise from the raw EEG signal,
it is filtered with cut-off frequencies of 0.5 Hz and 50 Hz [13, 18, 23].

4.2. Other classifiers used. Cellular automata based pattern classifier has been com-
pared with two variants of SVM classifier and three distinct types of ensemble learning
[24]. The details related to the variants of classifiers used and the number of learners used
are given in Tables 2, 3 and 4.
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Table 2. Variants of classifiers used for hold-out

Classifiers Acronyms Kernel Functions
Support Vector SVM1 Radial Basis

Machine SVM2 Polynomial (degree = 3)

Ensemble

Learner Types
ENS1 Subspace
ENS2 Logitboost
ENS3 Adaboost

Table 3. Number of learners in ensemble learning used in hold-out

Features ENS1 ENS2 ENS3
AAR 16 8 64

Eng-Ent 6 18 9
BP 3 6 16

Table 4. Variants of classifiers used for cross-validation and their learner numbers

Classifiers Acronyms Kernel Functions
Support Vector SVM1 Radial Basis

Machine SVM2 Polynomial (degree = 3)

Ensemble

Learner Types Learner Numbers
ENS1 Subspace

33ENS2 Logitboost
ENS3 Adaboost

4.3. System configuration. The implementation of this paper is done using MATLAB
2016a on an Intel(R) Core(TM) i5-6200U CPU 2.40 GHz with 8 GB RAM with 64 bits
Windows 10 Professional operating system.

5. Results and Discussions. MACA based pattern classifier is implemented once with
hold-out set-up and again with 10-fold cross-validation using stratified sampling. In hold-
out technique, the first 140 trials (instances) are taken as train-set and the remaining 140
trials as test-set. Three distinct types of feature extraction techniques: AAR, BP and
Eng-Ent are used in our study (refer 2.1). SVM classifier variants, SVM1 and SVM2 ,
use Radial Basis Function (RBF) and Polynomial (degree = 3) respectively. Similarly,
the ensemble learning variants used in our paper are Subspace (ENS1 ), Logit boosting
(ENS2 ) and Adaptive boosting (ENS3 ). The used learner number for all the ensemble
classifier variants is 33 (it is fixed after a rigorous search and provides consistent results
for all the variants).
It is observed that the best three performing classifiers using both hold-out and 10-fold

cross-validation are ENS1 , ENS3 and our proposed scheme (see Tables 5 and 6). Our
MACA-based classifier performs better than every alternative used.
Finally, our proposed CA pattern classifier is compared with few best performing ex-

isting classifiers for the BCI Competition II Dataset III (refer [22]). The comparison is
presented in a tabular format in Table 7 and shown in Figure 2. We have found that the
proposed CA pattern classifier gives accuracy of 91.16% from band power dataset using
10-fold cross-validation technique. This is, to the best of our knowledge, the highest ever
performance obtained from BCI Competition II Dataset III.
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Table 5. Accuracy obtained from different datasets using CA based pat-
tern classifier both for hold-out and cross-validation techniques

Technique AAR BP Eng-Ent
Hold-out 84.29 88.49 87.00
10-Fold 87.86 91.16 78.47

Table 6. Accuracies obtained from different classification techniques using
AAR, BP and Eng-Ent datasets

Classifier
Hold-out 10-Fold

AAR BP Eng-Ent AAR BP Eng-Ent
SVM1 79.29 50.71 77.86 76.50 49.64 78.42
SVM2 78.57 66.43 77.14 78.29 56.00 71.00
ENS1 82.14 82.14 82.14 77.14 78.29 81.64
ENS2 78.57 80.71 78.57 77.42 76.00 79.29
ENS3 77.14 83.57 79.29 78.77 77.64 80.35

Proposed
scheme

84.29 88.49 87.00 87.86 91.16 78.47

Table 7. Comparative analysis of a few best performing techniques on
BCI Competition II Dataset III

References Methods used Classifiers
Accuracy

(%)
Chatterjee et al. [13]

(Chatt1)
Wavelet energy-entropy

SVM (kernel:
Linear/polynomial)

85.00

Chatterjee and
Bandyopadhyay [18]

(Chatt2)

Average-power + band-power +
Wavelet energy-entropy + RMS
+ Statistical features (Table V)

MLP 85.71

Lemm et al. [9] Morlet wavelet Bayes Quadratic 89.29
Bashar and
Bhuiyan [10]

MEMD + STFT
KNN

(cosine distance)
90.71

Proposed scheme
10-fold cross-validation + band
power

MACA based
classifier

91.16

Figure 2. Accuracies of a few best performing techniques on BCI Com-
petition II Dataset III
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6. Conclusion. EEG based brain-states classification is an important research domain
in bio-signal applications. In the past, single and ensemble classifiers have been used to
classify motor-imagery signals. In this paper, an MACA-based pattern classifier is used
for the first time. It outperforms existing SVM and ensemble-based classifiers in its first
adaptation. The results are validated using both hold-out and 10-fold cross-validation
techniques. The best performances obtained from hold-out and 10-fold cross-validation
techniques are 88.49% and 91.16% respectively with band power dataset. In future,
the proposed classifier will be examined with more than one subject in a multi-class
configuration.
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