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Abstract. In this paper, the problem of the cooperative adaptive fault fuzzy tracking
control for networked unknown nonlinear leader-following systems with unknown non-
linear friction is discussed. Based on the principle of sliding mode control, an adaptive
fault tolerant control scheme is proposed, which guarantees that all followers asymptot-
ically synchronize a leader node with tracking errors converging to a small adjustable
neighborhood of the origin and a distributed sliding mode adaptive controller is designed
for each follower node to make tracking errors uniformly terminated and bounded. Based
on algebraic graph theory and Lyapunov theory, the stability and parameter convergence
of the algorithm are analyzed. Finally, the simulation results show the effectiveness of
the scheme.
Keywords: Fuzzy tracking control, Leader-following, Sliding mode control, Friction

1. Introduction. In recent years, the cooperative control of leader-following systems has
achieved fruitful research results [1-3] under the extensive attention of experts and schol-
ars. Generally speaking, the control problem of such systems can be categorized into two
classes, namely, the cooperative regulator problem and the cooperative tracking problem.
As stated in [4], for the first problem, distributed controller is respectively designed for
each follower, such that all followers are eventually driven to a leader. This problem is
known as (leaderless) consensus, synchronization, or rendezvous in literature. For the
later problem, a leader agent is considered, and it acts as a command generator, which
generates the desired reference trajectory and ignores information from the follower a-
gents. All other agents attempt to follow the trajectory of the leader agent. This problem
is known as leader-following consensus, synchronization to a leader, model reference con-
sensus, leader-following control, or pinning control. [5] investigates the output consensus
control problem of uncertain second-order nonlinear multi-agent systems with unknown
nonlinear dead zone, [6] considers the consensus tracking control problem for general lin-
ear multi-agent systems with unknown dynamics in both the leader and all followers, [7]
investigates the cooperative control problem of uncertain high-order nonlinear multi-agent
system on directed graph with a fixed topology. By using distributed observer approach,
the cooperative output regulation problem of linear multi-agent systems has been solved
under the assumption that each follower knows the system matrix of the leader system [8].
However, the aforementioned works do not take friction occurring in the systems into ac-
count, which motivates this work. Friction as a complex uncertain nonlinear phenomenon,
encounters in various practical systems, such as servo-mechanisms. In the paper, a co-
operative adaptive fuzzy tracking control scheme for unknown nonlinear leader-following
systems is proposed, which guarantees that all followers can asymptotically synchronize
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the leader with tracking errors being cooperative uniform ultimate bounded (CUUB).
Compared with existing works, the following main contributions are worth being em-
phasized. 1) Differing from some of the literature, the dynamic leader and all followers
considered in this paper are high-order and have unknown nonlinear dynamics; 2) the ap-
proach does not require the assumption that the parameters and frictions must be known
[9]; 3) furthermore, the condition that the friction parameters must be known, is removed
by approximating online.
The rest of this paper is organized as follows. In Section 2, basic graph theory and nota-

tions, the problem formulation are introduced. A cooperative adaptive tracking controller
is proposed for each follower in Section 3. Finally, Section 4 draws the conclusion.

2. Problem Statement and Preliminaries. Consider a multi-agent system consisting
of a leader and the followers. To solve the coordination problems and model the infor-
mation exchange between agents, graph theory is introduced here. Let O = (v, E) be a
weighted graph, v = (v1, . . . , vN) is the nonempty set of nodes/agents, E ⊆ v × v is the
set of edges/arcs, (vj, vi) ∈ E means there is an edge from node i to node j. The topology
of a weighted graph G is often represented by the adjacency matrix A = [aij] ∈ RN×N ,
and aij > 0 if (vj, vi) ∈ E; otherwise aij = 0. Throughout this paper, it is assumed
that aii = 0 and the topology is fixed, i.e., A is time-invariant. O is directed graph.
Define di =

∑N
j=1 aij as the weighted in-degree of node i and D = diag(d1, . . . , dN) as

in-degree matrix. The graph Laplacian matrix is L = [lij] = D − A. Let 1 = [1, . . . , 1]
with appropriate dimension; then L1 = 0. The set of neighbors of node i is denoted as
Nj = {j|(vj, vi) ∈ E}. If node j is a neighbor of node i, then node i can get information
from node j, not necessarily vice versa for directed graph. For undirected graph, neighbor
is mutual relation. A direct path from node i to node j is a sequence of successive edges
in the form {(vi, vl), (vl, vk), . . . , (vm, vj)}.
Notations: In this paper, R, Rn and Rn×m denote, respectively, the real numbers, the

real n-vectors, and the real n×m matrices; |∆| is the absolute value of a real number; ∥∆∥
is the Euclidean norm of a vector; ∥∆∥F is the Frobenius norm of a matrix; tr{·} is the
trace of a matrix; s(·) is the set of singular values of a matrix, with the maximum singular
value s̄(·), matrix P > 0 (P ≥ 0) means P is positive definite (positive semidefinite); I
denotes the identity matrix with appropriate dimensions.
Consider N (N ≥ 2) agents with distinct dynamics. Dynamics of the kth agent is

described in Brunovsky form{
ẋk,i(t) = xk,i+1(t)

ẋk,nk
(t) = fk(x̄k) + gk,1uk + gk,2Fr,k + dk(x̄k, t)

, i = 1, . . . , nk−1, k = 1, . . . , N (1)

where nk, xk,i ∈ R and x̄k = [xk,1, . . . , xk,nk
]T ∈ Rnk denote the ith state, the order number

and the state vector of node k; fk(x̄k): R
nk → R is locally Lipschitz in Rnk with fk(0) = 0

and it is assumed to be unknown; uk ∈ R is the control input/protocol; and dk(x̄k, t) ∈ R is
an external disturbance, which is unknown but bounded. gk,1, gk,2 ∈ R+ denote unknown
constants; Fr,k denotes the nonlinear friction term. The friction term Fr is assumed to have
the following form as in Fr,k = γ1(tanhk(γ2ẋk,1(t))− tanhk(γ3ẋk,1(t)) + γ4 tanhk(γ5ẋk,1(t))
+γ6ẋk,1(t)), here, γi ∈ R+, i = 1, 2, 3, 4, 5, 6 are unknown constants.
In this paper, it is assumed that n0 = n1 = n2 = · · · = nk = n, where n0 is the

order number of the following leader node, labeled 0. Define xi = [x1,i, . . . , xN,i]
T ∈ RN ,

i = 1, . . . , n, then the above agents’ dynamics can be re-written in the following compact
form: {

ẋi(t) = xi+1(t)

ẋn(t) = f (x̄) + gk,1u(t) + gk,2Fr,k + d (x̄, t)
, i = 1, . . . , n− 1 (2)
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where x̄ =
[
x̄T
1 , . . . , x̄

T
N

]T
, f (x̄) = [f1(x̄1), . . . , fN(x̄N)]

T , u(t) = [u1(t), . . . , uN(t)]
T , and

d(x̄, t) = [d1 (x̄1, t) , . . . , dN (x̄N , t)]
T .

The dynamics of the leader node, labeled 0, is described as follows:{
ẋ0,i(t) = x0,i+1(t)

ẋ0,n(t) = f0 (x̄0, t)
, i = 1, . . . , n− 1 (3)

where x0,i ∈ R and x̄0 = [x0,1, . . . , x0,n]
T ∈ Rn denote the ith state and the state vector of

the leader node k; f0 (x̄, t): [0,∞)×Rn → R is piecewise continuous in time t and locally
Lipschitz in x̄0 with f0(0, t) = 0 for all ∀t ≥ 0 and x̄0 ∈ Rn, and it is unknown for all
follower nodes.

System (3) is assumed to be forward complete, i.e., for every initial condition, the
solution x̄0(t) exists for all ∀t ≥ 0. In other words, there is no finite escape time. The
leader node dynamics (3) can be considered as an exosystem that generates a desired
command trajectory. Define the ith order tracking error (disagreement variable) for node
k (k = 1, . . . , N) as follows: δk,i(t) = xk,i(t)− x0,i(t), i = 1, . . . , n, k = 1, . . . , N . Let δi =
[δ1,i, . . . , δN,i]

T ∈ RN , i = 1, . . . , n, then δi = xi − x0,i where x0,i = [x0,1, . . . , x0,i]
T ∈ RN .

The control objective: The distributed controllers are designed for all follower nodes
such that the tracking error δi converges to small neighborhoods of the origin, for all i
(i = 1, . . . , n).

The following definition is introduced to illustrate the control problem, which extends
the standard concept of uniform ultimate boundedness to cooperative control systems.

Note that, it is assumed that only relative state information can be used for the follow-
er’s controller design in this paper. More precisely, for the kth node, the only obtainable
information is the neighborhood synchronization error

ek,i(t) =
∑
j∈Nk

akj(xj,i − xk,i) + bk(x0,i − xk,i)

where i = 1, . . . , n, k = 1, . . . , N and bk ≥ 0 is the weight of edge from the leader node to
node k (k = 1, . . . , N), bk > 0 if there is an edge from the leader node to node k.

Define the following notations:

ei = [e1,i, . . . , eN,i]
T ∈ RN , f

0
= [f0(x̄0, t), . . . , f0(x̄0, t)]

T ∈ RN ,

B = diag{b1, . . . , bN} ∈ RN×N

g1 = diag{g1,1, . . . , gN,1} ∈ RN×N , g2 = diag{g1,2, . . . , gN,2} ∈ RN×N

Similar to (2), the above tracking error can be re-written in the following compact form:{
ėi(t) = ei+1(t)

ėn(t) = −(L+B)
(
f + g1u(t) + g2Fr,k + d− f

0

)
, i = 1, . . . , n− 1 (4)

where the property L1 = 0 is used.
Define the augmented graph as Ō =

{
v̄, Ē

}
, v̄ = {v0, v1, . . . , vN} and Ē ⊆ v̄ × v̄. In

practical applications, the actuators may become faulty. The following assumptions on
the graph topology and the dynamics of leader node are made for co-operative tracking
problem.

Assumption 2.1. The augmented graph Ō contains a spanning tree with the root node
being the leader node 0.

Assumption 2.2. There exists a positive constant M0 > 0 ∈ R, Mf0 ∈ R such that
||x0(t)|| ≤ M0 and |f0(x̄0, t)| ≤ Mf0, ∀t ≥ t0.

Assumption 2.3. For each node k, an unknown constant Md,k > 0 ∈ R, so |d (x̄, t)| ≤
Md,k.
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Lemma 2.1. ||δi|| ≤ ||ei||
s(L+B)

, i = 1, . . . , n, where s(L + B) is a minimum singular value

of matrix L+B [4].

Lemma 2.2. Define q = [q1, . . . , qN ] = (L + B)−11, P = diag{pi} = diag
{

1
qi

}
, Q =

P (L+B) + (L+B)TP , then P > 0 and Q > 0.

In this paper, the fuzzy logic system (FLS) is used to approximate f(x). Let f(x) be
a continuous function that is defined on a compact set Ω. Then for any constant ε > 0,
there exists sup

∣∣f(x)− θT ξ(x)
∣∣ ≤ ε. FLSs are universal approximations, i.e., they can

approximate any smooth function on a compact space. Because of this approximation
capability, we can assume that the nonlinear term f(x) can be approximated as

f(x, θ) = θT ξ(x) (5)

Define the optimal parameter θ∗ as θ∗ = argminθ∈Ω
[
sup

∣∣f(x)− f (x, θ∗)
∣∣] where Ω and

U are compact regions for θ and x, respectively. Also the FLS minimum approximation
error is defined as

ε = f(x)− θ∗T ξ(x) (6)

In this paper, we use the aforementioned FLS to approximate the unknown functions
fk(x̄k), k = 1, . . . , N , namely, there exist θ∗k, εk such that fk(x̄k) = θ∗Tk ξk(x̄k) + εk.

Assumption 2.4. There exist unknown constants Mε,k > 0 ∈ R, k = 1, . . . , N such that
|εk| ≤ Mε,k.

3. Main Results. Define the filtered error σ for the kth node as follows:

σk =

(
d

dt
+ λ

)n−1

ek,1(t) =
n−1∑
i=1

ck,iek,i(t) + ek,n(t) (7)

where ck,i = C i−1
n−1α

n−i, i = 1, . . . , n − 1, αk > 0 denotes a designed parameter. Let
ek(t) = [ek,1(t), . . . , ek,n(t)]

T .

Lemma 3.1. Let σk be defined by (7), and then,
1) if σk = 0, then limt→∞ ek(t) = 0;
2) if |σk| ≤ ak, ek(0) ∈ Ωak , then ek(t) ∈ Ωak , ∀t ≥ 0;
3) if |σk| ≤ ak, ek(0) /∈ Ωak , then ∃Tk = (mk − 1)/λk, ∃∀t ≥ Tk, ek(t) ∈ Ωak ,

where Ωak =
{
ek(t)

∣∣|ek,i| ≤ 2(j−1)λj−mk
k ak

}
, i = 1, . . . , n, j = 1, 2, . . . ,mk.

For simplification, let c1,i = · · · = cN,i = λi, λn = 1, then σk = λ1ek,1 + · · ·+ λnek,n.
Define the global sliding mode error σ = [σ1, . . . , σN ]

T , then σ = λ1e1 + · · ·+ λnen.
Recalling the overall tracking error dynamics{

ėi(t) = ei+1(t)

ėn(t) = −(L+B)
(
f (x̄) + u(t) + d (x̄, t)− f

0

)
, i = 1, . . . , n (8)

one has

σ̇ = λ1ė1 + · · ·+ λnėn =
n−1∑
i=1

λiei + ėn = γ − (L+B)
(
f (x̄) + g1u+ g2Fr + d(x̄, t)− f

0

)
where γ =

∑n−1
i=1 λiei, ėi = [ė1,i, . . . , ėN,i]

T .
Define the following Lyapunov function

Vs = 1/2
(
σTPσ

)
(9)

where P = P T > 0.
Differentiating Vs with respect to time t, one has

V̇s = σTPγ − σTP (D +B)θ∗T ξ − σTP (D +B)
(
ε+ d− f

0

)
− σTP (L+B)(g1u)
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+σTPAθ∗T ξ + σTPA
(
ε+ d− f

0

)
− σTP (L+B)(g2Fr) (10)

First, using the mean values theorem we have g(x) = tanh(x) = ġ(λx)(x − 0), where
λ ∈ [0, 1].

And using |tanh(•)| < 1, we have ġ(λx) = λẋ
[
1− (tanh(λx))2

]
< λ |ẋ| ≤ |ẋ|.

Then, (10) can be transformed to the following form:

V̇s < σTPγ − σTP (D +B)θ∗T ξ − σTP (D +B)(ε+ d− f
0
)

−σTP (L+B)(g1u) + σTPAθ∗T ξ + σTPA(ε+ d− f
0
)

+σTP (L+B) |ẋ2| |ẋ1| [γg1 + γg2 + γg3 ] + σTP (L+B) |ẋ1| γg4 (11)

where |ẋ1| = diag {|ẋ1,1| , . . . , |ẋN,1|} ∈ RN×N , |ẋ2| = diag{|ẋ1,2| , . . . , |ẋN,2|} ∈ RN×N ,
γk,g1 = gk,2γk,1γk,2, γk,g2 = gk,2γk,1γk,3, γk,g3 = gk,2γk,4γk,5, γk,g4 = gk,2γk,6, γg1 = [γ1,g1, . . .,
γN,g1]

T , γg2 = [γ1,g2, . . . , γN,g2]
T , γg3 = [γ1,g3, . . . , γN,g3]

T , γg4 = [γ1,g4, . . . , γN,g4]
T .

Define control law as follows:

u = g−1
min

{
(D +B)−1γ − f̂ − sgn

(
sTP (D +B)

) ˆ̄Mdεf + cs

+ |ẋ2| |ẋ1| [γ̂g1 + γ̂g2 + γ̂g3] + |ẋ1| γ̂g4
}

(12)

where g−1
min = diag

{
g−1
min 1,1, . . . , g

−1
minN,1

}
∈ RN×N , f̂ =

[
f̂1, . . . , f̂n

]T
, f̂k = θ̂Tk ξk (x̄k), k =

1, . . . , N, are the estimate of fk (x̄k), Ps,k is the ith element of sTP (D + B), sgn
(
sTP (D

+B)) = diag(sgn(Ps,1), . . . , sgn(Ps,N)),
ˆ̄Mdεf =

[
M̂dεf,1, . . . , M̂dεf,N

]T
, M̂dεf,k is the es-

timate of Mdεf,k = Md,k + Mε,k + Mf0 , k = 1, . . . , N , and γg1 , γg2 , γg3 , γg4 are the
estimate of γ̂g1 , γ̂g2 , γ̂g3 , γ̂g4 , c > 0 ∈ R is a design parameter, which satisfies cs(Q)/2 −(
4r + λ̄2/

(
4rλ2

))
s̄(P )s̄(Q) > 0. Let θ̂T = diag

(
θ̂T1 , . . . , θ̂

T
N

)
, and θ̂Tk , k = 1, . . . , N are

the estimates of θ̂∗
T

k , in the following, define the notation: •̃ = • − •̂. Substituting the
control law (12) into (11), one has

V̇s = −cσTP (L+B)σ + σTP (D +B)θ̃T ξ + σTP (D +B)sgn
(
σTP (D +B)

) ˜̄Mdεf

+σTP (D +B)

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi+ |ẋ1| γ̃g4

)
+ σTPAθ̃T ξ + σTPA

(
ε+ d− f

0

)
−σTPAsgn

(
σTP (D +B)

) ˆ̄Mdεf − σTPA

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi+ |ẋ1| γ̃g4

)
+σTPA(D +B)−1γ

Since using Young inequality, we have

σTPAθ̃T ξ ≤ s̄(P )s̄(A)rσTσ +
s̄(P )s̄(A)

4r
ξT θ̃θ̃T ξ

−σTPAsgn
(
σTP (D +B)

) ˆ̄Mdεf ≤ s̄(P )s̄(A)rσTσ + s̄(P )s̄(A)
/
(4r) ˆ̄MT

dεf
ˆ̄Mdεf

σTPA
(
ε+ d− f

0

)
≤ s̄(P )s̄(A)rσTσ +

s̄(P )s̄(A)

4r
M̄T

dεfM̄dεf

σTPA(D +B)−1γ ≤ s̄(P )s̄(A)rσTσ +
s̄(P )s̄(A)

4r
γT (D +B)−2γ

σTPA

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi+ |ẋ1| γ̃g4

)
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≤ s̄(P )s̄(A)rσTσ +
s̄(P )s̄(A)

4r

(
3∑

i=1

|ẋ2| |ẋ1| γ̃gi+ |ẋ1| γ̃g4

)T ( 3∑
i=1

|ẋ2| |ẋ1| γ̃gi+ |ẋ1| γ̃g4

)
where r > 0 ∈ R is a design parameter and M̄dεf = [Mdεf,1, . . . ,Mdεf,N ]

T one has

V̇s = − cσTP (L+B)σ + σTP (D +B)θ̃T ξ + σTP (D +B)sgn
(
σTP (D +B)

) ˜̄Mdεf

+σTP (D +B)

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi+ |ẋ1| γ̃g4

)
+ 5rs̄(P )s̄(A)rσTσ

+ s̄(P )s̄(A)

/
(4r)

(
ξT θ̃θ̃T ξ + ˆ̄MT

dεf
ˆ̄Mdεf + M̄T

dεfM̄dεf + γT (D +B)−2γ

+

(
3∑

i=1

|ẋ2| |ẋ1| γ̃gi + |ẋ1| γ̃g4

)T ( 3∑
i=1

|ẋ2| |ẋ1| γ̃gi+ |ẋ1| γ̃g4

)
Notice that, since θ∗K and θ̂K are bounded, which are guaranteed by Assumption 2.4

and the adaptive law (14), and ξk(x̄k) ≤ 1, θ̃T ξ is bounded. From Assumptions 2.2 and
2.3, i.e., εk, dk and f0 are bounded, M̄dεf is bounded as well. The adaptive law (16)

ensures that ˆ̄Mdεf is bounded. Because θ̃T ξ, M̄dεf , γ̃gi , |ẋ2|, |ẋ1| and ˆ̄MT
dεf are bounded,

if r > 0 ∈ R is chosen to be large enough, then

s̄(P )s̄(A)

/
(4r)

ξT θ̃θ̃T ξ + ˆ̄MT
dεf

ˆ̄Mdεf + M̄T
dεfM̄dεf

+

(
3∑

i=1

|ẋ2| |ẋ1| γ̃gi+ |ẋ1| γ̃g4

)T ( 3∑
i=1

|ẋ2| |ẋ1| γ̃gi+ |ẋ1| γ̃g4

) ≤ µ0

where µ0 > 0 ∈ R is a design parameter, and since

γ2
k =

n−1∑
i=1

λ2
i e

2
k,i+1 ≤ λ̄2σ2

k

/
λ2

where λ̄ = max{λ1, . . . , λn}, λ = min{λ1, . . . , λn}, one has

γTγ =
N∑
k=1

γ2
k ≤

N∑
k=1

λ̄2

λ2σ
2
k =

λ̄2

λ2

N∑
k=1

σ2
k =

λ̄2

λ2σ
Tσ

So one has

V̇s ≤ −cσTP (L+B)σ + σTP (D +B)θ̃T ξ + σTP (D +B)sgn
(
σTP (D +B)

) ˜̄Mdεf

+σTP (D +B)

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi+ |ẋ1| γ̃g4

)
+
(
4r + λ̄2

/ (
4rλ̄
))

s̄(P )s̄(A)σTσ + µ0

Define

V0 = tr
{
θ̃T θ̃
}/

(2η1) +
˜̄MT
dεf

˜̄Mdεf

/
(2η2) +

∑3
i=1 γ̃

T
gi
γ̃gi

2η3
+

γ̃T
g4
γ̃g4

2η4

where ηi > 0 ∈ R, i = 1, 2, 3, 4 are design parameters.
Define V = Vs + V0, differentiating V with respect to time t, one has

V̇ ≤ −cσTP (L+B)σ + σTP (D +B)θ̃T ξ + σTP (D +B)sgn
(
σTP (D +B)

) ˜̄Mdεf



ICIC EXPRESS LETTERS, VOL.14, NO.8, 2020 775

+σTP (D +B)

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi+ |ẋ1| γ̃g4

)
+
(
4r + λ̄2

/ (
4rλ̄
))

s̄(P )s̄(A)σTσ + µ0

− tr
{
θ̃T

˙̂
θ
}/

η1 − ˜̄MT
dεf

˙̄̂
Mdεf

/
η2 −

∑3
i=1 γ̃

T
gi
˙̂γgi

η3
−

γ̃T
g4
˙̂γg4

η4
(13)

Define the adaptive laws as follows:

˙̂
θ =


η1ξP (D +B)σ + η0θ̂,

∥∥∥θ̂∥∥∥ < Mθ or
∥∥∥θ̂∥∥∥ = Mθ and σθ̂T ξ(x) ≤ 0

η1ξP (D +B)σ + η0θ̂ −
[
η1ξP (D +B)σ + η0θ̂

] θ̂θ̂T∥∥∥θ̂∥∥∥2 ,
∥∥∥θ̂∥∥∥ = Mθ and σθ̂T ξ(x) > 0

(14)

˙̄̂
Mdεf =



η2P (D +B)sgn
(
σTP (D +B)

)
σ + ηM

ˆ̄Mdεf ,
∥∥∥θ̂∥∥∥ < Mθ or

∥∥∥θ̂∥∥∥ = Mθ and σθ̂T ξ(x) ≤ 0

η2P (D +B)sgn
(
σTP (D +B)

)
σ + ηM

ˆ̄Mdεf

−
[
η2P (D +B)sgn

(
σTP (D +B)

)
σ + ηM

ˆ̄Mdεf

] θ̂θ̂T∥∥∥θ̂∥∥∥2 ,
∥∥∥θ̂∥∥∥ = Mθ and σθ̂T ξ(x) > 0

(15)

˙̂γgi = η3σ
TP (D +B) |ẋ2|T |ẋ1|T , i = 1, 2, 3, ˙̂γg4 = η4σ

TP (D +B) |ẋ1|T (16)

where η0 > 0 ∈ R, ηM > 0 ∈ R are design parameters, and θ̂, ˆ̄Mdε are bounded.
Proof: Substituting the adaptive laws into (13), as a result

V̇ ≤ −cσTP (L+B)σ + σTP (D +B)

(
|ẋ2| |ẋ1|

3∑
i=1

γ̃gi + |ẋ1| γ̃g4

)
+
(
4r + λ̄2

/ (
4rλ̄
))

s̄(P )s̄(A)σTσ + µ0 − tr
{
θ̃T

˙̂
θ
}/

η1 − ˜̄MT
dεf

˙̄̂
Mdεf

/
η2

−
3∑

i=1

γ̃gi
η3σ

TP (D +B) |ẋ2| |ẋ1|
η3

− γ̃g4
η4σ

TP (D +B) |ẋ1|
η4

≤ −cσTP (L+B)σ +
(
4r + λ̄2

/ (
4rλ̄
))

s̄(P )s̄(A)σTσ + µ0 − tr
{
θ̃T θ̂
}
η0

/
η1

− ˜̄MT
dεf

ˆ̄MdεfηM/η2

Because

−tr
{
θ̃T θ̂
}
η0

/
η1 ≤

tr
{
θ∗T θ∗

}
η0 − tr

{
θ̃T θ̃
}
η0

2η1
,

− ˜̄MT
dεf

ˆ̄MdεfηM

/
η2 ≤

ηM

(
M̄T

dεfM̄dεf − ˜̄MT
dεf

˜̄Mdεf

)
η2

one has

V̇ ≤ −cσTP (L+B)σ

2
+
(
4r + λ̄2

/ (
4rλ̄
))

s̄(P )s̄(A)σTσ + µ0

+
tr
{
θ∗T θ∗

}
η0 − tr

{
θ̃T θ̃
}
η0

2η1
+

ηM

(
M̄T

dεfM̄dεf − ˜̄MT
dεf

˜̄Mdεf

)
η2

We know θ∗, M̄dεf are bounded. So, if η0, η1, ηM , η2, η3 and η4 are chosen appropriately,

then
tr{θ∗T θ∗}η0

2η1
+

ηM(M̄T
dεfM̄dεf)
2η2

≤ µ1, where µ1 > 0 ∈ R is a design parameter.
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4. Conclusions. In the paper, for networked unknown nonlinear multi-agent systems
with unknown parameterizable friction, a cooperative adaptive fuzzy tracking controller
is proposed. By sliding mode control technique and the function approximation capability
of fuzzy logic system, using the relative state information between each follower node and
its neighbors, a cooperative adaptive fault fuzzy tracking control scheme is proposed such
that the tracking errors are semi-globally uniform ultimate bounded.

REFERENCES

[1] J. Chen, X. Cao, P. Cheng, Y. Xiao and Y. Sun, Distributed collaborative control for industrial
automation with wireless sensor and actuator networks, IEEE Trans. Ind. Electron., vol.57, no.12,
pp.4219-4230, 2010.

[2] R. Murray, Recent research in cooperative control of multivehicle systems, ASME J. Dynamic Syst.
Meas. Control, vol.129, no.5, pp.571-583, 2007.

[3] L. Zhao, J. Yu, C. Lin et al., Adaptive neural consensus tracking for nonlinear multiagent system-
s using finite-time command filtered backstepping, IEEE Trans. Systems, Man, and Cybernetics
Systems, pp.1-10, 2017.

[4] H. Zhang and F. L. Lewis, Adaptive cooperative tracking control of higher-order nonlinear systems
with unknown dynamics, Automatica, vol.48, no.7, pp.1432-1439, 2012.

[5] Q. Shen and P. Shi, Output consensus control of multiagent systems with unknown nonlinear dead
zone, IEEE Trans. Systems, Man, and Cybernetics Systems, vol.46, no.10, pp.1329-1337, 2017.

[6] J. Sun and Z. Geng, Adaptive consensus tracking for linear multi-agent systems with heterogeneous
unknown nonlinear dynamics, Int. J. Robust Nonlinear Control, vol.26, no.1, pp.154-173, 2016.

[7] P. Shi and Q. Shen, Cooperative control of multi-agent systems with unknownstate-dependent con-
trolling effects, IEEE Trans. Automation Science and Engineering, vol.12, no.3, pp.827-834, 2015.

[8] H. Cai, F. Lewis, G. Hu and J. Huang, The adaptive distributed observer approach to the cooperative
output regulation of linear multi-agent systems, Automatica, vol.75, pp.299-305, 2017.

[9] C. Makkar, G. Hu, W. G. Sawyer and W. E. Dixon, Lyapunov-based tracking control in the pres-
ence of uncertain nonlinear parameterizable friction, IEEE Trans. Automatic Control, vol.52, no.10,
pp.1988-1994, 2007.


