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Abstract. In this paper, the fault tolerant control problem is investigated for a class of
high-order nonlinear systems. By using the approximation capability of the fuzzy logic sys-
tem, an adaptive fault tolerant stability control scheme is proposed. Based on Lyapunov
stability theory, all of the signals in the closed-loop system are proved to be semi-globally
uniformly ultimately bounded. The simulation results demonstrate the effectiveness of
the approach.
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1. Introduction. Adaptive stabilizing control design of nonlinear systems is always one
of hot issues in current control theory research. Compared with linear systems, the nonlin-
ear systems are more accurate in describing the practical systems. However, the research
in nonlinear systems is more complex. The stabilization problem of high-order nonlinear
systems has received a lot of attention. The stability control or output tracking problem
of a class of high-order nonlinear systems has been studied [1-10]. In [4], a continuous
feedback method was proposed to solve the global strong stability problem of a nonlin-
ear system which may be unstable even locally. In [5], the output-feedback stabilization
problem for a class of stochastic high-order nonlinear systems was investigated. In [6], the
generalization of the homogeneous idea in the global adaptive stabilization of high-order
uncertain nonlinear systems was improved. In [7], the finite-time stabilization problem for
a class of high-order uncertain nonlinear systems was researched. In [10], the problem of
global asymptotic stabilization control design was solved for a class of high-order uncer-
tain nonlinear systems. It is well-known that the control problem of high-order systems
is more complex. Recently, high-order systems have been investigated, and many results
have been obtained [1-10]. However, the faults occurring in the controlled systems are not
considered in the above-mentioned results [4-7,10]. In fact, actuator faults often occur in
the practical applications, which will cause system performance deterioration and lead to
instability that can further produce catastrophic accidents.

In the past decades, fault tolerant control (FTC) has attracted wide attention, and
abundant results are achieved in [11-17]. In [15], a new sensor fault model was designed
to deal with practical problem in sensor fault diagnosis and estimation of near-space
hypersonic vehicle. In [16], the problem of fault-tolerant dynamic surface control was
discussed for a class of uncertain nonlinear systems with actuator faults, and an active
fault-tolerant control scheme was proposed. In [17], the problem of the time delay due
to fault diagnosis on system performance was investigated, and a new fault diagnosis
algorithm was proposed to avoid the negative effects. However, the above studies only
consider low-order systems and do not consider high-order systems.
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In this paper, an adaptive fault-tolerant stability control scheme is proposed for a
class of high-order nonlinear systems with actuator faults. The approximation capability
of fuzzy logic system is utilized to approximate the unknown function. The following
contributions in this paper should be emphasized: 1) the existing fault-tolerant control
results are extended to uncertain high-order nonlinear systems, and a fault-tolerant control
scheme based on fuzzy logic systems is proposed; 2) actuator bias faults are considered
and compensated.

2. Problem Statement and Preliminaries. Consider the following high-order non-
linear systems {

ẋ = f(x) + g(x)up

y = x
(1)

where x ∈ R, u ∈ R, y ∈ R denote the state, control input and output, respectively;
f(x) ∈ R is assumed to be an unknown continuous function; g(x) ∈ R is the control gain
function, which is unknown but bounded; p > 1 ∈ N is an odd positive integer.
In practical applications, actuator may become faulty. The actuator fault considered

in this paper is bias fault and its model can be described as

uf = u+ ub, t > tf (2)

where ub ∈ R denotes an unknown bounded signal, and tf is unknown fault occurrence
time.
The control objective is to design an adaptive fault tolerant control scheme such that

the system (1) is asymptotically stable.
In order to design a stable adaptive fuzzy controller, the following assumptions are

made for the system.

Assumption 2.1. gmax ≥ g(x) ≥ gmin, ∀x ∈ R, where gmax ∈ R and gmin ∈ R are known
positive constants.

Assumption 2.2. There exists a known positive constant b0, such that |ub| ≤ b0.

Lemma 2.1. Let c, d be positive real numbers and r(x, y) > 0 a real-valued function.
Then,

|x|c|y|d ≤ c

c+ d
r(x, y)|x|c+d +

d

c+ d
r

−c
d (x, y)|y|c+d

3. Fuzzy Logic Systems. According to [18], a fuzzy logic system (FLS) consists of four
parts: the knowledge base, the fuzzifier, the fuzzy inference engine working on fuzzy rules
and the defuzzifier. The knowledge base for FLS comprises a collection of fuzzy If-then
rules of the following form,
Ri: If x1 is F

1
1 and x2 is F

1
2 and . . . and xn is F 1

n, then y is Gi, i = 1, 2, . . . , N , where
x = [x1, x2, . . . , xn]

T and y are the input and output, respectively. F i
j and Gi denote

fuzzy sets. N is the rule number.
The FLS can be described as

y(x) =
N∑
i=1

θi

n∏
j=1

µF i
j(xj)

/
N∑
i=1

[
n∏

j=1

µF i
j(xj)

]
where θi = maxy∈R µGi(y). µF i

j(xj) and µGi(y) are the membership functions.
Define the fuzzy basis functions as

ξi(x) =
n∏

j=1

µF i
j(xj)

/
N∑
i=1

[
n∏

j=1

µF i
j(xj)

]
, i = 1, 2, . . . , N
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Let θT = [θ1, θ2, . . . , θN ]
T and ξ(x) = (ξ1(x), . . . , ξN(x))

T , and then the FLS can be
rewritten as

f(x, θ) = θT ξ(x)

Lemma 3.1. Let f(x) be a continuous function defined on a compact set U. Then for
any positive constant εw, there exists an FLS

sup
x∈U

∣∣f(x)− θ∗T ξ(x)
∣∣ ≤ εw

4. Control Design. Consider the following Lyapunov function:

V1 =
1

2
x2 (3)

By using Lemma 2.1, the time derivative of V1 is

V̇1 = xẋ

= x (f(x) + g(x)(u+ ub)
p)

= xf(x) + xg(x)(u+ ub)
p

= xf(x) + xg(x)

(
up + ub

p +

p−1∑
i=1

Ci
pu

iub
p−i

)

≤ xf(x) + xg(x) (up + ub
p) + |x|g(x)

p−1∑
i=1

Ci
p

∣∣ui
∣∣ ∣∣ub

p−i
∣∣

≤ xf(x) + xg(x) (up + ub
p) + |x|g(x)

p−1∑
i=1

Ci
p

(
i

p
|u|pγ +

p− i

p
|ub|pγ

−i
p−i

)
(4)

where γ > 0 is a real-valued function, and C i
p =

p!
i!(p−i)

.

Define the control law as

u = −sgn(x)u′

where u′ ≥ 0, and the specific definition will be given in (8).
From (4), we have
1) if x ≥ 0, u = −u′ ≤ 0, |u|p = u′p

V̇1 ≤ xf(x)− xg(x)u′p + xg(x)ub
p + xg(x)

p−1∑
i=1

Ci
p

i

p
u′pγ + |x|g(x)

p−1∑
i=1

Ci
p

p− i

p
|ub|pγ

−i
p−i

≤ xf(x)− xg(x)

(
1−

p−1∑
i=1

Ci
p

i

p
γ

)
u′p + xg(x)ub

p + |x|g(x)
p−1∑
i=1

C i
p

p− i

p
|ub|pγ

−i
p−i (5)

2) if x < 0, u = u′ ≥ 0, |u|p = u′p

V̇1 ≤ xf(x) + xg(x)u′p + xg(x)ub
p − xg(x)

p−1∑
i=1

Ci
p

i

p
u′pγ + |x|g(x)

p−1∑
i=1

Ci
p

p− i

p
|ub|pγ

−i
p−i

≤ xf(x) + xg(x)

(
1−

p−1∑
i=1

Ci
p

i

p
γ

)
u′p + xg(x)ub

p + |x|g(x)
p−1∑
i=1

Ci
p

p− i

p
|ub|pγ

−i
p−i (6)

From the above discussion, one has

V̇1 ≤ xf(x)− |x|g(x)

(
1−

p−1∑
i=1

C i
p

i

p
γ

)
u′p + xg(x)ub

p + |x|g(x)
p−1∑
i=1

Ci
p

p− i

p
|ub|pγ

−i
p−i (7)
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Define the control law and adaptive law as

u′ =

(
1

ρ1gmin

(∣∣∣f (x, θ̂)∣∣∣+ k|x|+ ε̂w +
ρ1
ρ2

b0
p

))1
p

(8)

˙̂
θ =


η1xξ(x),

∥∥∥θ̂∥∥∥ < Mθ or
∥∥∥θ̂∥∥∥ = Mθ and xθ̂T ξ(x) ≤ 0

η1xξ(x)− η1x
θ̂θ̂T

∥θ̂∥2 ξ(x),
∥∥∥θ̂∥∥∥ = Mθ and xθ̂T ξ(x) > 0

(9)

˙̂εw = η2|x| (10)

where ρ1 = 1−
∑p−1

i=1 C
i
p
i
p
γ, ρ2 = 1+

∑p−1
i=1 C

i
p
p−i
p
γ

−i
p−i ; k > 0 is a design parameter; θ̂ is the

estimate of θ∗; ε̂w is the estimate of εw; η1 > 0 and η2 > 0 are adaptive rates; θ̃ = θ∗ − θ̂,
ε̃w = εw − ε̂w.

5. Stability Analysis. For the system (1), using the above control law and adaptive
law, the following theorem is proposed.

Theorem 5.1. Considering the system (1) under Assumption 2.1 and Assumption 2.2,
the control law (8) and adaptive laws (9) and (10), then the closed-loop system is asymp-
totically stable, with all signals being semi-globally uniformly ultimately bounded.

Proof: Define the following Lyapunov function

V = V1 +
1

2η1
θ̃T θ̃ +

1

2η2
ε̃2w (11)

Differentiating V with time t, one has

V̇ ≤ xf(x)− |x|g(x)ρ1u′p + |x|g(x)b0pρ2 −
1

η1
θ̃T

˙̂
θ − 1

η2
ε̃w ˙̂εw

≤ xθ̃T ξ(x) + |x|ε̃w + |x|
∣∣∣f (x, θ̂)∣∣∣+ |x|ε̂w − |x|g(x)ρ1u′p + |x|g(x)b0pρ2

− 1

η1
θ̃T

˙̂
θ − 1

η2
ε̃w ˙̂εw

≤ θ̃T
(
xξ(x)− 1

η1

˙̂
θ

)
+ ε̃w

(
|x| − 1

η2
˙̂εw

)
+ |x|

∣∣∣f (x, θ̂)∣∣∣+ |x|ε̂w

− |x|g(x)ρ1u′p + |x|g(x)b0pρ2
Substituting the control law (8) and adaptive laws (9) and (10) into the above equation,

we have

V̇ ≤ −kx2 + θ̃T
(
xξ(x)− 1

η1

˙̂
θ

)
+ ε̃w

(
x− 1

η2
˙̂εw

)
≤ −kx2 ≤ 0 (12)

Integrating (12) over [0, t], we obtain
∫ t

0
V̇ (τ)dτ ≤ −

∫ t

0
kx2(τ)dτ , i.e.,

∫ t

0
kx2(τ)dτ ≤

V (0) − V (t). Then,
∫ t

0
kx2(τ)dτ ≤ V (0) − V (+∞). Therefore, x ∈ L2, |x| ≤

√
2V (0).

Since x ∈ L2, x ∈ L∞ and ẋ ∈ L∞, then, lim
t→∞

x = 0. Theorem 5.1 is proved.

6. Simulation. In order to verify the effectiveness of the proposed solution, consider the
following nonlinear system{

ẋ1 = x2

ẋ2 = −0.2x1 − 0.5x2 − 5 sin x2 − 2 sin x1 + (−x1 − 2x2)u
3 (13)

The initial states of the system are taken as x1(0) = 0.5, x2(0) = 0, ε̂(0) = 0, θ̂T = (1, 0).
The parameters are designed as η1 = 0.1, η2 = 0.1, ρ1 = 0.3, ρ2 = 0.1, gmin = 0.1, k = 0.1.
The simulation results are presented in Figures 1 and 2. From Figure 1, it can be seen to
eventually reach zero and reach stability.
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Figure 1. State of x1, x2
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Figure 2. Control law u

The simulation shown in Figure 1 demonstrates the stability of the closed-loop system.

7. Conclusions. In this paper, for a class of high-order nonlinear systems with actuator
faults, the fuzzy logic system approximation capability is used to approximate the un-
known nonlinear term, and an adaptive fault tolerant control scheme is designed. This
scheme can guarantee all signals in the closed-loop system semi-globally uniformly ulti-
mately bounded. However, the system considered in this paper includes the first order
integrators. Furthermore, it is well-known that many practical systems are modeled by
such high-order systems, and how to deal with the control problem is very challenging
and will be studied in our further research.
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