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Abstract. In fields of soft-robotics and human assistive devices, the utilization of
elastic materials is highly expected as alternatives of conventional electric actuators. On
the other hand, the difficulty in combining traditional mathematical methods for rigid-
body mechanics and elastic material prevents systematic and consistent analysis. In this
study, we introduced the absolute nodal coordinate formulation as the extended theory
and proposed the systematic evaluation of the necessary stiffness of the elastic material
embedded in the human assistive devices. Our computer experiment successfully demon-
strated the evaluation when the device is dynamically deforming depending on the human
posture. It will contribute to opening the new era of the systematic design of human
assistive devices, which will significantly reduce the trial-and-error workload of expert
prosthetists.
Keywords: Multibody dynamics, Absolute nodal coordinate formulation, Soft-robotics,
Elastic materials, Human assistive devices

1. Introduction. As Sanchez-Villamañan et al. [1] reviewed, exoskeleton devices have
been studied in the form of a rigid-body structure with compliant actuators, while re-
cently soft exoskeletons are highlighted due to advantages in a light weight and low cost,
such as Ding et al. [2] and Graf et al. [3] for assistance during walking. Interestingly, Näf
et al. [4] proposed a support exoskeleton device to prevent backbone damage by using
flexible beams. They practically implemented carbon-fiber beams into the spinal module
of the device to help the subject to lift up the upper-body and provided a simple analysis
of the stiffness and displacement based on the conventional theory of structures. However,
rigid and soft exoskeletons are not alternative options and hybrid types are studied with
a high expectation [1, 5]. On the other hand, theories of rigid-body mechanics and struc-
tural dynamics for elastic material such as the finite element method (called FEM) were
developed individually so far, which causes the difficulty of the whole system analysis to
combine rigid and soft parts together. For the sake of the solution, the absolute nodal
coordinate formulation (abbreviated as “ANCF”), which was originally formulated by
Shabana [6, 7], is crucial for the system evaluation of assistive devices in a comprehensive
manner and enhances fair comparisons among different devices. Originally, the multibody
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system dynamics (abbreviated as “MBD”) [8, 9] was proposed as the systematic way to
analyze rigid body mechanics. In the method, the complexity of Newton-Euler equations
for all movable components was replaced in the systematic matrix formulation composed
of algebraic equations from all constraints by using the single Jacobian matrix. Therefore,
the theory enables complex systems to compare after the normalization of device weights
and driving force conditions, as demonstrated by Komoda and Wagatsuma [10]. ANCF
is an integrative theory to combine MBD and FEM to analyze any deformable material
in the same systematic procedure.
In this study, we hypothesized that the ANCF facilitates the utilization of materials

with a property of the elastic deformation in the aim of human assistive devices, due to
an accurate estimation of the force generation depending on the human posture when
it dynamically moves, with respect to the target property of the elastic material. We
have proposed the carbon fiber reinforced plastic (called CFRP) beam as a component of
the assistive device to provide an additional force to help human motions [11, 12]. The
purpose of the present study is the establishment of the ANCF based analysis method
for assistive devices with flexible beams. The paper is organized as our previous human
experiments with the device with a CFRP beam in Section 2 and the basic formulation
of the ANCF in Section 3. Section 4 described the comparison between results by ANCF
and the conventional theory. The analysis of dynamics of the planar flexible beam in
ANCF providing elastic forces during the deformation of the beam was in Section 5 and
conclusions were in Section 6.

2. Human Assistive Devices with CFRP. In our human experiments, we investi-
gated the effectiveness of the CFRP beam as a component to accumulate the potential
energy in the standing up posture if the body is bending at the waist and then, ideally,
the accumulated energy can be released in the form of a force generation when the body
raises [11] (Figure 1), which is consistent with Näf et al. [4]. If the CFRP stiffness is
too much hard to bend for the subject, the phenomenon cannot be used for the assistive
function. Therefore, the appropriate estimation of the stiffness parameter is crucial for
the realization of the function to reduce the load by the upper-body weight and associate
with the muscle coordination.

Figure 1. A human posture investigated with the 3D motion capture sys-
tem in the experiment with CFRP to prevent a backbone problem

In the CFRP beam, the stiffness is designed by the flexural rigidity basically defined as

EI
dy

dx
=

∫ x

0

M(x)dx+ C (1)

where E is the modulus of elasticity or Young’s modulus [Pa], I is the second moment
of area [m4], y is the transverse displacement of the beam at x and M(x) is the bending
moment at x (C is a constant). Thus, the important problem is the determination of the
EI value of the CFRP beam.
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3. Theory of the Absolute Nodal Coordinate Formulation. In following sections,
mathematical formulation is described in the style of the ANCF description by Shabana
[7, 9]. In the first place, the global position vector of an arbitrary point on the element
can be described as

r = Se (2)

where S is the global shape function, and e is the vector of element nodal coordinates
that includes global displacements and slopes defined at the nodal points of the element.
The shape function can be written as

S =

[
S1

S2

]
=



1− 3ξ2 + 2ξ3 0

0 1− 3ξ2 + 2ξ3

l (ξ − 2ξ2 + ξ3) 0

0 l (ξ − 2ξ2 + ξ3)

3ξ2 − 2ξ3 0

0 3ξ2 − 2ξ3

l (−ξ2 + ξ3) 0

0 l (−ξ2 + ξ3)



T

(3)

and the vector of nodal coordinates is

e =
[
e1 e2 e3 e4 e5 e6 e7 e8

]T
(4)

where ξ = x/l, l is the length of the element, e1, e2 are global displacements of the node
at A, e5 and e6 are global displacements of the nodes at B shown in Figure 2, and slopes
are as follows.

e3 =
∂r1(x = 0)

∂x
, e4 =

∂r2(x = 0)

∂x
, e7 =

∂r1(x = l)

∂x
, e8 =

∂r2(x = l)

∂x
(5)

o
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Figure 2. The planar beam element of ANCF

3.1. Definition of the mass matrix. By differentiating Equation (2) with respect to
time, the absolute velocity vector can be defined. This velocity vector can be used to
define the kinetic energy of the element as

T =
1

2
ėMaė (6)

where Ma is the constant mass matrix of the element defined as
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Ma =

∫
V

ρSTSdV

= m
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(7)

where m is the mass of the element.

3.2. Definition of the stiffness matrices. In this study, we used the stiffness matrices
proposed by Takahashi et al. [8, 13]. The strain energy due to the longitudinal deformation
can be defined as

Ul =
1

2

∫ l

0

EAε2dx (8)

where E is the modulus of elasticity of the element, A is the cross sectional area of the
element, and ε is the longitudinal strain which can be written as

ε =
ld − l

l
=

√
(e5 − e1)2 + (e6 − e2)2 − l

l
(9)

where ld

(
=

√
(e5 − e1)2 + (e6 − e2)2

)
is the length of the deformed element. Substituting

Equation (9) into Equation (8) following equation can be obtained.

Ul =
1

2
EAl

[
1

l2
{
(e5 − e1)

2 + (e6 − e2)
2
}
− 2

l

√
(e5 − e1)2 + (e6 − e2)2 + 1

]
(10)

Using Equation (10), the vector of the elastic forces in the longitudinal direction can be
defined as

Ql =

(
∂Ul

∂e

)T

= Kle (11)

where Kl is the stiffness matrix of axial strain defined as

Kl =
EA

l
εd



1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0

0 −1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


(12)

where εd can be written as

εd =
ld − l

ld
(13)
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Note that this stiffness matrix Kl defined in Equation (12) must be calculated in every
time step of the numerical integral because Kl includes the time-varying strain εd.

The strain energy for bending deformation can be defined as

Ut =
1

2

∫ l

0

EIκ2dx (14)

where κ is the radius of curvature and can be defined from geometrical relationship shown
by Figure 3 as

κ =
1

ρ
=

dθ

dx
(15)

where ρ is the curvature radius. We assume that the extensional deformation is infinites-
imal and the relation

∂r1
∂x

=
∂S1

∂x
e = cos θ,

∂r2
∂x

=
∂S2

∂x
e = sin θ (16)

holds. Differentiation of preceding equations with respect to the longitudinal direction
yields

∂2S1

dx2
e =

∂ cos θ

∂x
= − sin θ

dθ

dx
,

∂2S2

∂x2
e =

∂ sin θ

∂x
= cos θ

dθ

dx
(17)

From preceding equation, it can be found that(
∂2S1

∂x2
e

)2

+

(
∂2S2

∂x2
e

)2

=

(
dθ

dx

)2

(18)

From Equations (15) and (18), the square of κ can be obtained as

κ2 =

(
dθ

dx

)2

=

(
∂2S1

∂x2
e

)2

+

(
∂2S2

∂x2
e

)2

=

(
∂2S

∂x2
e

)T (
∂2S

∂x2
e

)
(19)

Then Equation (14) can be rearranged as

Ut =
1

2
eT

{∫ l

0

EI

(
∂2S

∂x2

)T (
∂2S

∂x2

)
dx

}
e (20)

Using Equation (20), the vector of the elastic forces due to the bending deformation can
be defined as

Qt =

(
∂Ut

∂e

)T

= Kte (21)

where Kt can be defined as

Kt =

∫ l

0

EI

(
∂2S

∂x2

)T (
∂2S

∂x2

)
dx

=
EI

l3



12 0 6l 0 −12 0 6l 0
0 12 0 6l 0 −12 0 6l
6l 0 4l2 0 −6l 0 2l2 0
0 6l 0 4l2 0 −6l 0 2l2

−12 0 −6l 0 12 0 −6l 0
0 −12 0 −6l 0 12 0 −6l
6l 0 2l2 0 −6l 0 4l2 0
0 6l 0 2l2 0 −6l 0 4l2


(22)

Elastic forces of the beam element due to the deformation can be obtained using Equations
(11) and (21) as

Qk = Ql +Qt (23)
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Figure 3. The beam element in bent state

3.3. Definition of equations of motion. The equation of motion of the finite element
can be defined as

Maë = Qa −Qk (24)

where Ma is the constant mass matrix defined by Equation (7), ë is the second derivative
of the vector of nodal coordinates defined by Equation (4), Qa is the generalized nodal
forces including external forces and Qk is the vector of elastic forces defined by Equation
(23).

4. Comparison of Static Theoretical Values and Calculated Values Using AN-
CF. We compared the deflections of the flexible beam which has parameters of CFRP
between theoretical values obtained using the following equation [14] and calculated values
using ANCF (Table 1). The beam was divided into 5 elements.

dy2

dx2
= −M

EI
(25)

where y is the deflection, x is the position of the longitudinal direction, M is the bending
moment (Figure 4), E is the modulus of elasticity, and I is the second moment of area.

Table 1. Parameters of the flexible beam

Length l 1 (m)
Modulus of elasticity E 7.53× 1010 (Pa)

Second moment of area I 3.79× 10−11 (m4)
Density ρ 1.5× 103 (kg/m3)

Bending moment M0 0.3 (Nm)

y

o x

M

Figure 4. Deflections of the beam

Figure 5 shows the comparison of theoretical values obtained from Equation (25) and
calculated values using ANCF. The deflections were calculated on six nodes because the
beam was divided into five elements. It proved that the result of ANCF is consistent with
the result from the conventional theory.
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Figure 5. The result of the comparison of static theoretical values and
calculated values using ANCF

5. Results of Computer Experiments. In this study, in order to evaluate the elastic
force generation as an assist device, the deformation of the CFRP beam is set, which
represent a bending motion, and the dynamics of the planar flexible beam to recover
to the straight form was analyzed. Parameters of the beam discussed in Section 4 were
shown in Table 1 except for the bending moment described in Equation (26). Figure 6(a)
showed the computational model of the flexible beam in this case, which was divided into
5 elements and had 6 nodes. In the assumption, Node 1 at the bottom was fixed on the
ground and the bending moment was given at Node 6 at the top of the beam as follows.

M(t) =

 1.125t Nm, t ≤ 4.0
4.5 Nm, 4.0 < t ≤ 4.5
0, t > 4.5

(26)

Equation (26) was given assuming that the subject wearing the assistive device bends at
the waist (or the hip position) and then stops for a certain period of time and finally
releases the power at the point.

4.55 s

4.57 s

4.60 s 4.51 s

4.00 s

0 s
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Figure 6. The computer experiment of the flexible beam: (a) the compu-
tational model; (b) deformed shapes of the beam

The CFRP beam was deformed with respect to the external force given at the end point
(Figure 6(a)). Table 2 showed the average magnitude of elastic moments depending on
individual nodes. At t ≤ 4.0, the external force (moment) was gradually increased and
then the constant bending moment was given in the time period 4.0 < t ≤ 4.5. After
the period, t > 4.5, the beam was moving in the reversal direction to recover the original
straight form. Average magnitudes of the elastic moments of Nodes 2, 3, 4 and 5 in
the first and second period were mutually consistent, with respect to the difference from
Nodes 1 and 6.
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Table 2. Average magnitudes of the elastic moments depending on nodes

Time (s)
Node (Nm)

1 2 3 4 5 6
0-4.0 2.2908 0.0006 0.0006 0.0006 0.0006 2.2447
4.0-4.5 4.5843 0.0006 0.0006 0.0006 0.0006 4.4810

4.5-4.53062 6.3484 2.0090 1.9251 2.1164 2.6307 2.2436
4.5-5.0 5.0382 2.2731 2.0002 2.3620 2.7676 2.1269

After releasing, 4.0 < t ≤ 4.5, elastic moments at all nodes except for Node 6 increased
in comparison to values in the previous periods. Interestingly, Node 1 had a high elastic
moment rather than others. It represents that the elastic moment was accumulated at
Node 1 after releasing from the bending shape as shown in the right side of Figure 6(b). It
implies that the strain energy was stored in the beam when the external bending moment
was given, and the accumulated energy at the moment was released, which acts as lifting-
up force. Therefore if the CFRP beam is applied to assistive devices, the subject who wears
the device receives the force generation to lift the upper-body. In addition, this result was
derived when the CFRP beam is certainly fixed at the waist (or the hip position) as the
ground in the computer experiment (Figure 6(a)) and it is highly important to generate
the lifting force.

6. Conclusions. In the computer experiments, the ANCF analysis was successfully
demonstrated to evaluate the force generation in the bending point. According to the
assumption that the initial node is set at the waist (or the hip position) of the human-
body and the end node is attached at the neck position, the lifting force can be generated
from the CFRP beam and it is utilized to help the subject to raise the upper-body, which
may help to prevent the backbone problem. This result implies that this method is avail-
able for the evaluation of assistive devices as how it effectively works for helping human
motions. In consideration of the human body parameters such as the weight and height,
the analysis reveals the effectiveness of the device at a specific time moment during a
risky posture of the human body, like a backbone ache. In further analyses, this method
will be combined with the human model and develop as the systematic evaluation of how
much the CFRP with a special shape can generate to fit for the necessity of the human
posture properly.
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