
ICIC Express Letters ICIC International c⃝2021 ISSN 1881-803X
Volume 15, Number 10, October 2021 pp. 1029–1036

IMPLEMENTATION OF ALBERT FOR TEXT MINING ON JACOB
VOICE CHATBOT

Melvin Hendronoto and Arya Wicaksana∗

Department of Informatics
Universitas Multimedia Nusantara

Jl. Scientia Boulevard, Gading Serpong, Tangerang 15810, Indonesia
melvin.hendronoto@student.umn.ac.id; ∗Corresponding author: arya.wicaksana@umn.ac.id

Received January 2021; accepted April 2021

Abstract. Jacob is a voice chatbot application used to find information about the Mul-
timedia Nusantara University’s Informatics Dual Degree program. One of Jacob’s short-
comings is the lack of information when answering new questions from users. There-
fore, this research focuses on implementing ALBERT (albert-base-v2 and albert-xxlarge-
v1 models) as a web service with two modes (explore and explore more) for text mining
online information in real time. The implementation is integrated into the Jacob voice
chatbot application. The SQuAD 2.0 dataset is used in fine-tuning the applied ALBERT
model. The overall accuracy and F-score of the two ALBERT models in this study are
0.58 and 0.7077 for the albert-base-v2 and 0.79 and 0.87 for the albert-xxlarge-v1. The
fastest average user time is 1.86579 seconds for the albert-base-v2 in explore mode and
the longest is 539.03581 seconds for the albert-xxlarge-v1 in explore more mode.
Keywords: ALBERT, Text mining, Transformer, Voice chatbot

1. Introduction. Artificial intelligence is a popular research field in computer science
because it improves people’s lives in many fields [1-7]. One of many popular artificial
intelligence applications is voice chatbot, and Jacob is one of them [3]. Jacob provides
information about the Informatics Dual Degree program at Universitas Multimedia Nu-
santara (UMN). The answers given by Jacob come from the knowledge database that has
stored answers to specific questions. Jacob has a shortcoming in answering new questions
due to the limited knowledge base. Fortunately, the Internet today provides almost all
the information needed.

Text mining is utilized in this study to retrieve specific information based on the
question’s keywords. The text mining process consists of searching, fetching, and pre-
processing the Internet results in real time. One neural network architecture that is
powerful for text mining is ALBERT [8].

ALBERT is developed based on the BERT (Bidirectional Encoder Representation
from Transformers) neural network architecture, and it is lighter than BERT. Devlin et
al. showed that ALBERT gives the highest F-score of 92.2% for the SQuAD 2.0 dataset,
with an increase of 17.4% compared to the BERT neural network architecture [9]. AL-
BERT’s architecture shows a good performance in question answering cases. Zhang et
al. obtained an exact match score of 87% and an F-score of 90.2% in machine reading
comprehension [10].

This study aims to implement ALBERT and integrate it into the Jacob voice chatbot
as a web service. The web service’s primary purpose is text mining. The proposed web
service is built using the Python 3.5 programming language and the Python Flask 1.0.2
web app framework. Testing and evaluation of the web service are done using the SQuAD
2.0 dataset to measure the accuracy, the F-score, and the user time of the web service.

DOI: 10.24507/icicel.15.10.1029

1029



1030 M. HENDRONOTO AND A. WICAKSANA

The rest of this paper is organized as follows. Section 2 briefly describes the preliminar-
ies, including ALBERT, Jacob, and the SQuAD dataset. Section 3 describes the design
and implementation of the web service, including the test case. Section 4 presents and
discusses the results and evaluation of the implementation in terms of accuracy, F-score,
and user time. Section 5 concludes this paper with some discussions on future work.

2. Preliminaries. ALBERT (A Lite BERT) is a neural network architecture designed
with fewer parameters than BERT architecture [8]. The ALBERT architecture has the
same foundation as BERT, namely using encoder transformers and GELU non-linearities.
ALBERT uses fewer parameters compared to BERT-large. In the research conducted by
El-Geish on the question answering system, he used a stacking ensemble of two models
[11].
The study results show that the albert-xxlarge-v1 has the best evaluation results, and

the albert-base-v2 has the third-best Top-1 Answer evaluation result, which is not much
different from albert-large-v2 even though it has the smallest parameter. Therefore, this
study decided to use the albert-xxlarge-v1 and albert-base-v2. This research also decided
to take advantage of the fine-tuning of the model in the research conducted by El-Geish.
Fine-tuning models are available at https://huggingface.co/models? search = elgeish [11].
Jacob is the voice chatbot application built by Wijaya and Wicaksana in [3] that pro-

vides information about the Informatics Dual Degree program in UMN. The general
workflow of Jacob voice chatbot is shown in Figure 1 [3].

Figure 1. Jacob voice chatbot workflow

Jacob was developed as a web application using the PHP programming language with
the Laravel framework and Python with the Flask framework. Jacob has four main
modules:

• Jacob [3], a module that functions as a voice chatbot, and translates input from the
user to obtain the input’s essence and identify its name.

• Cleveree [5], a module that functions as a “smart” feature of the voice chatbot,
automatic summarization, and answer paraphrasing.

• Vision [7], a module that functions as a “vision” feature, namely in the form of face
recognition.

• Virtual Character, a module that functions to display 3D animation of Jacob’s char-
acter.



ICIC EXPRESS LETTERS, VOL.15, NO.10, 2021 1031

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset
consisting of more than 100,000 questions on Wikipedia articles. The answers to each
question are included in [12]. The SQuAD was created to meet the need for good quality
and large datasets. The stages of collecting the dataset were carried out in 3 stages,
namely

• Passage curation, collecting the top 10,000 Wikipedia articles to take paragraphs
that are considered essential;

• Question-answer collection, asking the crowd workers to give questions and answer
five questions from the results obtained in the passage curation;

• Additional answers collection, asking crowd workers to provide at least two additional
answers to indicate human performance.

3. Design and Implementation. The design process starts with requirement analysis
of the web service to allow complete integration with the existing Jacob web app. The only
language supported by Jacob is English. Thus, the text mining works only for information
in English. Another requirement is to update the question word entity on Wit.ai used by
Jacob to meet the 5W1H and to add the DateTime entity on Wit.ai, which Jacob uses to
detect time in user inquiries. The proposed web service model is displayed in Figure 2.

Figure 2. Web service model

The web service built has five resources: getCurrModel, changeModel, docRetrieval,
predictAnswer, and getMoreText. The getCurrModel is to get the current model used
by the web service. The changeModel is to change the model for the web service. The
docRetrieval is to get search results using the Google Custom Search API. The getMore-
Text is to get the text content from the web page. The predictAnswer is to predict the
answer to a question from a collection of sentences. The request and response data format
is JSON.

Jacob naturally could not answer new questions that have not been recorded in the
existing knowledge database. Jacob checks whether or not the question is valid. The
checking process uses the question word entity obtained from wit.ai. If there is a ques-
tion word entity, Jacob shows the two buttons’ value: the toggle-explore button and the
toggle-deeper button. The toggle-explore must be set to true to allow the use of ALBERT.



1032 M. HENDRONOTO AND A. WICAKSANA

The toggle-deeper is used to determine whether or not the text mining process fetches
more data. The searching step on the Internet is done using the Google custom search
engine API. After the text mining process is complete, the web service sends the predicted
answer to Jacob. Jacob finally answers the user using the newly retrieved answer from
the web service.
Suppose the answer is found from the process. In that case, the variable isFound is set

to true, indicating that answers to questions that were not in the database were found
and can be entered into the database. To insert into the database, Jacob receives input
regarding a confirmation from the user to determine whether the answer is correct or
sensible.
In the explore mode, Jacob sends a Document Retrieval post request to the web service

to get text search results related to user queries. If the request is successful, Jacob will
send a Predict Answer post request to the web service to answer user questions considered
in the search result text. In the explore more mode, Jacob requests to post Document
Retrieval to the web service. The difference between the two functions lies in the element
used from the response obtained when requesting post Document Retrieval, namely the
detail element. Jacob will look for answers by retrieving the text obtained from the Get
More Text request post with the URL value in detail. The process will be carried out as
many as the number of elements in detail. Jacob will take the answer with the highest
score (highest probability).
The implementation work consists of interface design implementation, ALBERT imple-

mentation, web service integration on Jacob, and Google Custom Search Engine (CSE)
API settings. The interface design is implemented by developing the existing Jacob ap-
plication with the Laravel framework. The interface is made according to the design
in the previous chapter. The ALBERT models for predicting answers use pre-trained
models from the Transformers library in the Python programming language based on the
work of Lan et al. [8]. The model successfully established new state-of-the-art results on
the GLUE, RACE, and squad benchmarks while having fewer parameters compared to
BERT-large.
The web service implementation and integration to Jacob are done by adding the text

“Do you want me to explore the Internet?” and the toggle-explore button with a Yes
or No value with the Bootstrap Toggle’s help. If the toggle-explore button is Yes, two
buttons will appear below it, namely the Change Model button and the toggle-deeper
button.
The Change Model button gets the value of the model name currently used by the web

service. There are only two values on the Change Model button because the web service
only has two models. The toggle-deeper button has two values: Normal and In-depth.
Testing is done to see whether the implementation of ALBERT as a web service can

find answers to user questions. The test is categorized into two: the explore mode and
the explore more mode. The tests are carried out using 12 test cases shown in Table 1.

4. Results and Discussion. In this section, we describe the testing results and the
performance evaluation of the two ALBERT models. The performance was evaluated in
terms of speed (user time), accuracy, and F-score. We also compare and evaluate the
model’s performances against the SQuAD dataset. The complete results of the twelve
test cases are given in Table 2 for the explore mode and in Table 3 for the explore more
mode.
Here we also present the evaluation of the web service according to the test cases

in Table 1. We also evaluate the model against the SQuAD dataset with the help of
run squad.py provided in the ALBERT research GitHub repository.
Based on the testing results in Table 2 and Table 3, the XXLarge-v1, in general, gives

better answers compared to the Base-v2 model in both explore mode and explore more



ICIC EXPRESS LETTERS, VOL.15, NO.10, 2021 1033

mode. The Base-v2 model sometimes could not predict any answer for the given question.
The XXLarge-v1 model specifically predicts a better answer than the Base-v2 model, for
example, question number eleven, where the model’s answer is the CSS scripting syntax.
The accuracy and F-score of the model are also given in Figure 3.

Table 1. Test case

Case No. Question
1 What is an ALBERT NLP?
2 What is Text Mining?
3 Who is Rector of Universitas Multimedia Nusantara?
4 Who is the Founder of Swinburne University?
5 Where will I work?
6 Where do I live?
7 When was Universitas Multimedia Nusantara founded?
8 When was Swinburne Univesity founded?
9 Why to study computer science?
10 Why to choose Universitas Multimedia Nusantara?
11 How to center a div?
12 How much is 1 AUD in IDR?

Table 2. Prediction of answers (explore mode)

Case No. Model Answer
1 Base-v2 Not found

XXLarge-v1 A deep-learning natural language processing model
2 Base-v2 Artificial Intelligence (AI) technology

XXLarge-v1 An Artificial Intelligence (AI) technology
3 Base-v2 Dr Ninok Leksono

XXLarge-v1 Dr Ninok Leksono
4 Base-v2 George Swinburne

XXLarge-v1 George Swinburne
5 Base-v2 Not found

XXLarge-v1 Not found
6 Base-v2 Ohio

XXLarge-v1 Not found
7 Base-v2 2005

XXLarge-v1 2005
8 Base-v2 1908

XXLarge-v1 1908
9 Base-v2 Having

XXLarge-v1 Having a computing degree will provide you with the com-
puter technology is at the heart of many endeavors to make
a meaningful difference in the world

10 Base-v2 Not found
XXLarge-v1 The visual communication design study program at univer-

sitas multimedia nusantara
11 Base-v2 In a page

XXLarge-v1 Select
12 Base-v2 9,715.48

XXLarge-v1 9,266.1474



1034 M. HENDRONOTO AND A. WICAKSANA

Table 3. Prediction of answers (explore more mode)

Case No. Model Answer
1 Base-v2 Not found

XXLarge-v1 A deep-learning Natural Language Processing (NLP) model
2 Base-v2 Not found

XXLarge-v1 Text analytics
3 Base-v2 Not found

XXLarge-v1 Ninok Leksono
4 Base-v2 George Swinburne

XXLarge-v1 George Swinburne
5 Base-v2 Pharmacy technician

XXLarge-v1 On or off campus
6 Base-v2 Not found

XXLarge-v1 We
7 Base-v2 25 November 2005

XXLarge-v1 25 November 2005
8 Base-v2 1908

XXLarge-v1 1908
9 Base-v2 If you see yourself designing and creating software systems

XXLarge-v1 Because it is interesting
10 Base-v2 Not found

XXLarge-v1 Designed for editing a wide array of media
11 Base-v2 Text-align:center

XXLarge-v1 Text-align:center
12 Base-v2 10,000

XXLarge-v1 10,000

Figure 3. Accuracy and F-score of ALBERT implementation

In total, there are four implementations of ALBERT done in this study. The accuracy
and F-score presented in Figure 3 show that the XXLarge-v1 with the explore mode
delivers the best accuracy and F-score. It is even higher than the XXLarge-v1 model



ICIC EXPRESS LETTERS, VOL.15, NO.10, 2021 1035

Figure 4. Average user time (in seconds)

Table 4. User-time comparison (in seconds)

Case No.
Base-v2
(explore)

XXLarge-v1
(explore)

Base-v2
(explore more)

XXLarge-v1
(explore more)

1 1.91188 32.45005 88.61286 638.92878
2 1.71480 28.83286 106.85740 1,353.59997
3 2.00821 29.42678 49.29493 423.79215
4 1.70766 28.31160 33.12582 494.76223
5 1.61744 25.26825 50.48791 605.75582
6 1.65615 25.26825 18.84919 138.52278
7 1.88878 29.03388 56.56785 400.73201
8 1.66120 28.99163 26.44385 419.79450
9 1.58756 26.02800 49.34542 529.10140
10 1.81755 29.64002 42.95223 446.13287
11 2.47170 39.64678 34.03609 457.99803
12 2.34652 38.76354 69.46481 559.30915

Table 5. Evaluation against the SQuAD 2.0 dataset

Metric Base-v2 XXLarge-v1
Accuracy 0.79 0.86
F-score 0.82 0.89

using the explore more mode. The overall accuracy and F-score of the Base-v2 model are
0.58 and 0.71. The overall accuracy and F-score of the XXLarge-v1 are 0.79 and 0.87.
Further analysis of the average user time required by each implementation is presented in
Figure 4. The recorded user time value is shown in Table 4.

The measured average user time is 1.86579 seconds for the albert-base-v2 and 30.13847
seconds for the albert-xxlarge-v1 in the explore mode, and 52.16986 seconds for the albert-
base-v2 and 539.03581 seconds for the albert-xxlarge-v1 in the explore more mode. Based
on the results, it is evident that the XXLarge-v1 with the explore mode yields the best
performance out of the four implementations.

Further evaluation using the SQuAD dataset is carried out also in this study to evaluate
the final model against the SQuAD 2.0. The evaluation is carried out using the Dev-Set
dataset provided for evaluation by SQuAD with the help of run squad.py provided on the
ALBERT research GitHub repository. The accuracy and F-score of this test are given in
Table 5.

5. Conclusions. The web service implementation of ALBERT has successfully done and
integrated with the Jacob voice chatbot. The web service addition helps Jacob find



1036 M. HENDRONOTO AND A. WICAKSANA

answers to new questions from the Internet in real time. With the options to set the
modes: explore and explore more, users could use them as preferred.
The accuracy and F-score of the web service are more than 80% for the ALBERT

XXLarge-v1 model implementation. However, the fastest implementation is the AL-
BERT Base-v2 in explore mode with the shortest average user time of 1.86579 seconds.
These numbers show the promising result of the text mining feature in a voice chatbot
application. The holy grail is to seek a better model that could not only predict answers
more accurately and precisely but also faster.
Based on the research that has been done, future work could be done on fine-tuning

the ALBERT even further to achieve higher accuracy and F-score while maintaining the
user time as low as possible. The advancement of machine learning algorithms would also
enable the implementation of even faster and better neural network models to top the
SQuAD leaderboard.

Acknowledgment. This work is fully supported by Universitas Multimedia Nusantara.
The authors gratefully acknowledge the helpful comments and suggestions of the review-
ers, which have improved the presentation of the paper.

REFERENCES

[1] K. Dhammayanti, A. Wicaksana and S. Hansun, Position placement DSS using profile matching and
analytical hierarchy process, Int. J. Sci. Technol. Res., vol.8, no.11, 2019.

[2] V. Kurniawan, A. Wicaksana and M. I. Prasetiyowati, The implementation of eigenface algorithm
for face recognition in attendance system, Proc. of 2017 the 4th International Conference on New
Media Studies (CONMEDIA2017), DOI: 10.1109/CONMEDIA.2017.8266042, 2017.

[3] S. Wijaya and A. Wicaksana, JACOB voice chatbot application using wit.ai for providing informa-
tion in UMN, Int. J. Eng. Adv. Technol., vol.8, no.6 (Special Issue 3), DOI: 10.35940/ijeat.F1017.
0986S319, 2019.

[4] Abiyoga, A. Wicaksana and N. M. S. Iswari, Decision support system for choosing an elective
course using naive bayes classifier, in Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing. SNPD 2019. Studies in Computational Intelligence, R. Lee (edt.),
Cham, Springer, 2020.

[5] Octavany and A. Wicaksana, Cleveree: An artificially intelligent web service for Jacob voice chat-
bot, Telkomnika (Telecommunication Comput. Electron. Control.), DOI: 10.12928/TELKOMNI
KA.v18i3.14791, 2020.

[6] K. Alexander, A. Wicaksana and N. M. S. Iswari, Labeling algorithm and fully connected neural
network for automated number plate recognition system, in Applied Computing and Information
Technology. ACIT 2019. Studies in Computational Intelligence, R. Lee (edt.), Cham, Springer, 2020.

[7] A. Archilles and A. Wicaksana, Vision: A web service for face recognition using convolutional
network, Telkomnika (Telecommunication Comput. Electron. Control.), DOI: 10.12928/TELKOM
NIKA.v18i3.14790, 2020.

[8] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma and R. Soricut, ALBERT: A lite BERT for
self-supervised learning of language representations, arXiv.org, arXiv: 1909.11942, 2020.

[9] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, BERT: Pre-training of deep bidirectional trans-
formers for language understanding, arXiv.org, arXiv: 1810.04805, 2019.

[10] Z. Zhang, J. Yang and H. Zhao, Retrospective reader for machine reading comprehension, arXiv.org,
arXiv: 2001.09694, 2020.

[11] M. El-Geish, Gestalt: A stacking ensemble for SQuAD2.0, arXiv.org, arXiv: 2004.07067, 2020.
[12] P. Rajpurkar, J. Zhang, K. Lopyrev and P. Liang, SQuAD: 100,000+ questions for machine compre-

hension of text, Proc. of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp.2383-2392, DOI: 10.18653/v1/d16-1264, 2016.


