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Abstract. As the importance of software development rises in companies, software
effort estimation field of study is getting more attention. Accurate estimation is very im-
portant to the success of software development projects, but there are no existing models
that can serve the purpose perfectly. To contribute in future development of software ef-
fort estimation, this systematic literature review analyzes the trends of model and dataset
implementation in software effort estimation. The PRISMA methodology is used in the
review process. A total of 26 eligible publications are queried and screened from Google
Scholar and arXiv for further analysis. The analysis result shows the variability of model
implementation in effort estimation. It is also observed in the study that deep learning
models are started to be implemented in text-based effort estimation with Long Short-
Term Memory (LSTM) and Bidirectional Encoder Representations from Transformers
(BERT) model as its base model. Additionally, it is also concluded that dataset utiliza-
tion in effort estimation does not vary as much as the models.
Keywords: Software effort estimation, Cost estimation, Software project, Literature
review

1. Introduction. The advancement of technology in the past years has led to a surge
in software development needs [1]. Companies and businesses, including those of non-
technological sectors, are facing the transformation of market demands which leads to
changes in their technological perspective [2]. The ability of companies to successfully
deliver their technological products is a key factor to extend their flexibility in delivering
products and services, making it an important catalyst of success.

There are several factors which affect the success of software projects, one of the most
important being Software Effort Estimation (SEE). Previous study has found that the
capability of accurately estimating a software project’s effort leads to a better management
of resource and budget [3]. Additionally, it is also found in the study that inability to
perform so may lead to loss of jobs and competitive project contracts as most project
failures are correlated to its planning phase.

Thorough study has been made on the SEE field of research. The models of SEE are
generally divided into algorithmic models, machine learning models, and expert judge-
ment [4]. Mathematical equations and statistical analysis form the basic foundations of
algorithmic models. An example is the Constructive Cost Model (COCOMO) [5] which
is studied from an extensive size of 63 projects. An improved version of the model named
COCOMO-2 [6] has also been published, which is based on a study of 161 projects.

Machine learning models implemented in SEE vary from traditional machine learning
to deep learning models. Examples of such models are Support Vector Regression (SVR)
models [7], ensemble models [8], and neural networks [4]. Among these models, it has
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been found that deep learning models such as neural networks perform generally better
than traditional regression models for SEE, showing its effectiveness [1].
Expert judgment method, on the other hand, relies on the decision of knowledgeable

experts. This method is argued for being prone to personal interests, therefore vulnerable
to subjectivity. Despite so, it has been found that expert judgement is not an entirely
bad practice as some projects may benefit from implementing it [9].
Although comprehensive studies have been made in the SEE field of study, there are

challenges yet to be solved by researchers. Existing SEE models and methods are still
struggling to achieve excellent performance consistently on diverse software projects [4,
10, 11]. Researchers are still studying to improve the achievable accuracy and minimize
the loss of SEE models. Additionally, the diverse choice of SEE datasets and evaluation
metrics may add the issue in maintaining the consistency of model comparisons.
To support the development of SEE models and contribute in determining the most

appropriate SEE model and dataset to implement, we present a thorough Systematic
Literature Review (SLR) based on PRISMA methodology. This SLR aims to analyze
the trends of the model developments and dataset usage in SEE studies. Publications
will be searched from multiple search engines and screened for eligibility based on some
predetermined criteria. At the end of the study, we suggest several future challenges that
can be studied by researchers in the development of SEE.

2. Methodology. The goal of this SLR is to provide an informative answer to some
predetermined research questions. The research questions to be answered in this study
are as follows:

1) What are the most trending models to be implemented in SEE cases?
2) What are the most commonly used datasets for training and evaluating SEE models?

To serve as a constructive approach of reviewing, Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) [12] methodology is implemented in this
study. The study framework is divided into four phases which are identification, screen-
ing, eligibility checking, and document inclusion. In the identification phase, several
queries will be done on selected article search engines, such as Google Scholar (https://
scholar.google.com/) and arXiv (https://arxiv.org/). Then, the query results will be doc-
umented and filtered accordingly for suitable studies. The query keywords used in this
study are as follows:

1) project effort estimation
2) effort estimation
3) project effort

Upon obtaining the search results, the publications are screened in the screening phase
to suit with the study. Several eligibility criteria are used in this screening process, which
are:

1) The publications must not be older than five years.
2) The publications must be related to software project effort estimation.
3) The publications must be written in English.
4) The publications must propose and evaluate a model for Software Project Effort Esti-

mation.

In the eligibility checking phase, a collection of 41 feasible publications is produced.
These publications are then read thoroughly for content suitability. In the end of the
screening process, 26 remaining eligible publications are included (document inclusion
phase) in the reviewing pool. The process of this PRISMA-based SLR may be observed
in Figure 1.
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Figure 1. PRISMA flowchart

3. Result.

3.1. List of included publications. Several queries are performed on Google Scholar
and arXiv for publication search. The query results show a great number of publications
which are published since 2016 with titles or contents related to the search keywords.
Due to the impressive number of related publications, only 26 studies are selected and
discussed in this review. The results of the document search are as illustrated in Table 1.
The detailed list of reviewed studies may also be observed in Table 2.

Table 1. Record selection

Source Found Screened Selected
Google Scholar 10,510,000 1,366,000 20

arXiv 152 87 6

3.2. Analysis of publications.

3.2.1. What are the most trending models to be implemented in SEE cases? The summary
and count of SEE models used in the reviewed studies may be observed in Table 3. As
observed in the summary, algorithmic and fuzzy models are frequently utilized in SEE
studies. Algorithmic models, as described in the previous section, rely on mathematical
equations and theories. On the other hand, the fuzzy model is based on fuzzy logic which is
introduced in 1975 [38]. It is a machine learning approach to SEE which excels at handling
uncertainty in estimations [30], which is possibly the reason for its high implementation
frequency.

Analogy-based models follow with 4 implementation counts. Analogy-based estimation
is expert judgement models that relies on equivalent projects. In such models, estimates
are derived from similarity measures from these projects. Among these studies, an inter-
esting approach by Resmi and Vijayalakshmi [32] implemented complex machine learning
models in the analogy-based model. The authors implemented regressors and classifiers
such as Multi-Layer Perceptrons (MLP) to process the dataset, clusters it with expecta-
tion maximization, and then applies firefly algorithm for optimization. The result of the
model successfully achieved 0.01 MMRE and 97.76 Pred (.25) on the Miyazaki dataset.

Among all SEE model types, the machine learning model most frequently implement-
ed in the studies. These models consist mostly of MLP and optimization models such
as the firefly algorithm, humpback whale algorithm, and satin bowerbird optimization.
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Table 2. Chosen publications

Source Year Title

arXiv 2015 Optimizing Software Effort Estimation Models Using Firefly Algo-
rithm [13]

arXiv 2016 A Hybrid Model for Estimating Software Project Effort from Use
Case Points [14]

arXiv 2018 Hyperparameter Optimization for Effort Estimation [15]

arXiv 2019 Software Development Effort Estimation Using Regression Fuzzy
Models [16]

arXiv 2020 SE3M: A Model for Software Effort Estimation Using Pre-Trained
Embedding Models [17]

arXiv 2020 Software Effort Estimation Using Parameter Tuned Models [18]

Google Scholar 2017 A Light-Weight Incremental Effort Estimation Model for Use Case
Driven Projects [19]

Google Scholar 2017 Bayesian Network Model for Task Effort Estimation in Agile Software
Development [20]

Google Scholar 2017 Empirical Assessment of Machine Learning Models for Agile Software
Development Effort Estimation Using Story Points [21]

Google Scholar 2017 Fuzzy Analogy Based Effort Estimation: An Empirical Comparative
Study [22]

Google Scholar 2017 Ontology Based Multiagent Effort Estimation System for Scrum Agile
Method [23]

Google Scholar 2017 Satin Bowerbird Optimizer: A New Optimization Algorithm to Op-
timize ANFIS for Software Development Effort Estimation [24]

Google Scholar 2017 Software Effort Estimation Using Grey Relational Analysis [25]

Google Scholar 2018 An Effective Approach for Software Project Effort and Duration Es-
timation with Machine Learning Algorithms [26]

Google Scholar 2018 Analogy-Based Model for Software Project Effort Estimation [27]

Google Scholar 2018 Case-Based Reasoning with Optimized Weight Derived by Particle
Swarm Optimization for Software Effort Estimation [28]

Google Scholar 2018 Software Effort Estimation Using Grey Relational Analysis with K-
Means Clustering [29]

Google Scholar 2018 Uncertainty Management in Software Effort Estimation Using a Con-
sistent Fuzzy Analogy-Based Method [30]

Google Scholar 2019 A Deep Learning Model for Estimating Story Points [31]

Google Scholar 2019 An Effective Software Project Effort Estimation System Using Opti-
mal Firefly Algorithm [11]

Google Scholar 2019 Analogy-Based Approaches to Improve Software Project Effort Esti-
mation Accuracy [32]

Google Scholar 2019 Effort Estimation Model for Software Development Projects Based
on Use Case Reuse [33]

Google Scholar 2019 Process-Driven Incremental Effort Estimation [34]

Google Scholar 2020 Exploring the Whale Optimization Algorithm to Enhance Software
Project Effort Estimation [35]

Google Scholar 2020 Hyperparameters Tuning of Ensemble Model for Software Effort Es-
timation [36]

Google Scholar 2020 Validation of Existing Software Effort Estimation Techniques in Con-
text with Mobile Software Applications [37]
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Table 3. Utilized models in publications

Model Count Publications

Algorithmic 5 [19, 25, 29, 33, 34]

Fuzzy 5 [11, 16, 22, 30, 32]

Multi-layer perceptron 5 [16, 26, 32, 36, 37]

Analogy-based 4 [22, 27, 30, 32]

Firefly algorithm 3 [11, 13, 32]

Grey relational analysis 3 [25, 28, 29]

Bayesian 2 [20, 34]

Deep learning 2 [17, 31]

Ensemble 2 [26, 36]

Genetic algorithm 2 [36, 37]

Particle swarm optimization 2 [28, 36]

Random forest 2 [21, 36]

Support vector machine 2 [14, 26]

BERT 1 [17]

CART 1 [15]

Humpback whale algorithm 1 [35]

Ontology-based 1 [23]

Partial least square 1 [18]

Satin bowerbird optimization 1 [24]

Traditional machine learning models such as the Support Vector Machine (SVM) have
been implemented in SEE studies in the early years of the reviewed studies [14]. It is
also observable in the studies that deep learning models such as MLP are implemented
on later studies in 2018 [26].

It is only until 2019 that more sophisticated deep learning models such as the Long
Short-Term Memory (LSTM) model are implemented in the observed studies [31]. In the
same study, LSTM is used to learn from issue report text to estimate story points in agile
projects which changes the perspective of the study to a Natural Language Processing
(NLP) case. The deep learning model implementation in 2020 by Fávero et al. [17] pro-
gresses to the use of Bidirectional Encoder Representations from Transformers (BERT)
[39] which is the state-of-the-art text classification model. BERT is one of the first break-
through models to successfully implement transfer learning in NLP. The study implements
SEE from software requirement documents of open source projects with BERT, achieving
4.25 Mean Absolute Error (MAE). Though deep learning is a rapidly growing field of
study, not much has been implemented in SEE.

Aside from deep learning, the role of biologically-inspired optimization algorithms in
machine learning SEE models is also noticeable from the studies. These algorithms include
the implementation of firefly algorithm, humpback whale algorithm, and satin bowerbird
optimization. The firefly algorithm [11] is inspired by the characteristics of a firefly being
attracted to light. The closer the firefly to the objective, the brighter it will shine and
the higher the chance of it to attract nearby fireflies. The satin bowerbird optimization
[24], meanwhile, is inspired by the courtship or mating phase of the bird. The male satin
bowerbird has the characteristic to build bowers for attracting its mating partner and
mimic its competitors. Finally, the humpback whale algorithm [35] is inspired by the
spiral pattern the whales make upon attacking their prey.

Based on the model utilization, it can also be concluded that model variability is high
in the study of SEE. Judging from the sorted model frequencies, the median value of
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implementation frequency is a mere 2 from 26 studies. Therefore, it is more likely for
future studies to explore newer approaches compared to improving the current method.

3.2.2. What are the most commonly used datasets for training and evaluating SEE models?
The summary of dataset utilization in the studies is observable in Table 4. As illustrated
in the table, most studies use the ISBSG dataset or choose to self-provide the dataset
from education or industry projects. The ISBSG dataset is a repository of diversified
instances which require preprocessing before usage in SEE [36].

Table 4. Utilized datasets in publications

Dataset Count Publications

ISBSG 7 [15, 16, 22, 24, 26, 30, 36]

Self-provided 7 [14, 19, 20, 21, 23, 33, 34]

Albrecht 6 [15, 18, 22, 24, 30, 32]

COCOMO 6 [11, 18, 22, 29, 30, 32]

Desharnais 6 [15, 18, 22, 28, 30, 32]

NASA 6 [11, 13, 18, 30, 32, 35]

Kemerer 5 [15, 22, 24, 25, 32]

Maxwell 5 [15, 18, 27, 28, 32]

China 4 [15, 18, 22, 30]

Miyazaki 4 [15, 22, 30, 32]

Kitchenham 2 [15, 18]

Open source with JIRA 2 [17, 31]

Finnish 1 [15]

SAMOA dataset 1 [37]

UCP dataset 1 [18]

Interestingly, it can be observed that the ISBSG, Albrecht, and Desharnais datasets are
implemented on machine learning and fuzzy models in the reviewed studies. For example,
the study by Moosavi and Bardsiri [24] enhanced the Adaptive Neuro-Fuzzy Inference
System (ANFIS) model with satin bowerbird optimization on the Albrecht, Kemerer, and
ISBSG datasets to achieve 0.49 MMRE and 0.637 Pred (0.25). However, the same does
not apply to algorithmic models in the reviewed publications. It has been observed that
three out of five reviewed studies that use algorithmic models provide their own SEE
dataset [19, 33, 34]. For example, Qi and Boehm [34] used 61 student projects to form
their dataset and relied on Jira tickets and reports to determine the project effort. To
build their models, the entire observed publications which have proposed deep learning
models use open source projects, also with Jira reports, for their datasets [17, 31].
Most of the datasets in the SEE study are found in repositories such as the SEACRAFT

and the PROMISE repository. The SEACRAFT repository which is used by Xia et al. [15]
contains most of the datasets in the reviewed SEE studies, such as the Kemerer, Albrecht,
ISBSG, Finnish, Miyazaki, Maxwell, Desharnais, Kitchenham, and China datasets. It can
be concluded from this observation that SEE dataset choice pattern exists, but it does
not vary as much as its model variations and progressions.

4. Future Challenge. A large variety of models have been developed and tested in the
SEE field of study. Though some has proven to show state-of-the-art performance, there
are still improvements to be made and fields to be explored. Among all of the evaluated
models in SEE, not much attention has been given to deep learning models. Deep learning
models are proven to be better than traditional machine learning models on various tasks
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such as NLP and computer vision [40]. Its superior performance promises a great potential
of improvement in SEE.

Aside from deep learning, more sophisticated NLP study can also be done in SEE. Some
of the observed studies in this review have developed their models using text datasets
from open source projects with Jira [17, 31]. This means that aside from developing the
model solely for optimization of variables, the feature extraction process from the analyzed
project text can also be focused on. Implementing more state-of-the-art NLP models may
also be an interesting challenge in future studies. For example, the Robustly optimized
BERT approach (RoBERTa) model is a promising choice. The model has been found to
exceed the performance of BERT and other state-of-the-art baseline NLP models [41]. As
it has only recently been studied, future SEE studies may benefit from such improvements
on text-based effort estimation.

5. Conclusion. This systematic literature review implements the PRISMA methodology
to analyze the trends of model and dataset implementation in software effort estimation.
Related publications are queried through Google Scholar and arXiv search engines, which
will then be screened for eligibility based on predetermined criteria. After the screening,
a total of 26 publications are reviewed for this study. The result of model implementation
analysis shows some variability of model choice. Compared to the expert judgement and
algorithmic models, machine learning models are the most frequently implemented in
SEE. Deep learning models may also be found in the later years of the study, which is
also the start of text-based SEE studies. Additionally it is also observed that the dataset
utilization of SEE does not vary as much as the models. Much can still be studied in
software effort estimation, especially in the deep learning model development.
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[33] K. Rak, Ž. Car and I. Lovrek, Effort estimation model for software development projects based on
use case reuse, Journal of Software: Evolution and Process, vol.31, 2019.

[34] K. Qi and B. W. Boehm, Process-driven incremental effort estimation, Proceedings – 2019
IEEE/ACM International Conference on Software and System Processes (ICSSP2019), pp.165-174,
2019.

[35] A. A. Fadhil and R. G. Alsarraj, Exploring the whale optimization algorithm to enhance software
project effort estimation, 2020 the 6th International Engineering Conference “Sustainable Technology
and Development” (IEC), pp.146-151, 2020.

[36] S. K. Palaniswamy and R. Venkatesan, Hyperparameters tuning of ensemble model for software
effort estimation, Journal of Ambient Intelligence and Humanized Computing, 2020.



ICIC EXPRESS LETTERS, VOL.15, NO.10, 2021 1117

[37] M. Pandey, R. Litoriya and P. Pandey, Validation of existing software effort estimation techniques
in context with mobile software applications, Wireless Personal Communications, vol.110, pp.1659-
1677, 2020.

[38] L. A. Zadeh, Fuzzy logic and approximate reasoning, Synthese, vol.30, nos.3-4, pp.407-428, 1975.
[39] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, BERT: Pre-training of deep bidirectional trans-

formers for language understanding, Proc. of NAACL-HLT 2019, pp.4171-4186, 2019.
[40] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, vol.521, pp.436-444, 2015.
[41] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V. Stoy-

anov, RoBERTa: A robustly optimized BERT pretraining approach, arXiv.org, arXiv: 1907.11692v1,
2019.


