APPLICATIONS OF HYPERSEMIGROUPS TO INTERVAL-VALUED FUZZY SUBSETS

PAIROTE YIARAYONG

Department of Mathematics Faculty of Science and Technology Pibulsongkram Rajabhat University 156 Moo 5, Tambon Phlaichumphon, Muang District, Phitsanulok 65000, Thailand pairote.y@psru.ac.th

Received March 2021; accepted May 2021

ABSTRACT. The purposes of this paper are to introduce generalizations of interval-valued fuzzy hypersemigroups to the context of interval-valued fuzzy hypersemigroups. We also discuss some basic properties of interval-valued fuzzy hypersemigroups and characterize the interval-valued fuzzy hypersemigroups. Moreover, we define interval-valued fuzzy subhypersemigroups, interval-valued fuzzy hyperideal (right interval-valued fuzzy hyperideal, left fuzzy hyperideal), interval-valued fuzzy hyper bi-ideals and interval-valued fuzzy hyper interior ideals in interval-valued fuzzy hypersemigroups and some properties of them are obtained. At the end we characterize interval-valued fuzzy hyper interior ideals and interval-valued fuzzy hyper bi-ideals. In this regard, we prove that an interval-valued fuzzy subhypersemigroup $\tilde{\mu}$ of an interval-valued fuzzy hypersemigroup S is an interval-valued fuzzy hyper interior ideal of S if and only if $\tilde{S} \circ \tilde{\mu} \circ \tilde{S} \subseteq \tilde{\mu}$.

Keywords: Interval-valued fuzzy hypersemigroup, Interval-valued fuzzy hyper interior ideal, Interval-valued fuzzy hyperideal, Interval-valued fuzzy hypersimple, Interval-valued fuzzy hyper bi-ideal

1. Introduction. In 1975, Zadeh [15] introduced the notion of an interval-valued (i.v.) fuzzy subset. In 2007, Davvaz [3] studied some properties of (fuzzy) hyperideals in H_{v} semigroups. In 2008, Sen et al. [12] introduced the concept of the fuzzy hypersemigroup as a generalization of semigroup and fuzzy subset. In 2009, Davvaz et al. [5] introduced and studied the notion of quasicoincidence in a fuzzy interval value with an interval-valued fuzzy set. Davvaz and Fotea [4] defined interval-valued (anti) fuzzy n-ary subpolygroups. In 2010, Kazanci et al. [8] introduced a new type of fuzzy n-ary sub-hypergroups in an *n*-ary hypergroup, that is, the $(\in, \in \lor_q)$ -fuzzy *n*-ary sub-hypergroups. In 2015, Kar et al. [7] introduced and studied the notion of interval-valued fuzzy hyperideals of semihypergroups. In 2016, Nozari [10] has studied commutative fundamental relations in fuzzy hypersemigroups. Abdullah et al. [1] have studied interval valued intuitionistic fuzzy bi- Γ -hyperideals, interval valued intuitionistic fuzzy $(1,2) - \Gamma$ -hyperideals and interval valued intuitionistic fuzzy left (right, two sided) Γ -hyperideals of Γ -semihypergroups. Khan et al. [9] introduced the notion of $(\in, \in \vee_{q_k})$ -cubic hyperideals, $(\in, \in \vee_{q_k})$ -cubic bihyperideals, $(\in, \in \vee_{q_k})$ -cubic generalized bi-hyperideals, $(\in, \in \vee_{q_k})$ -cubic interior hyperideals and $(\in, \in \bigvee_{q_k})$ -cubic quasi-hyperideals in LA-semihypergroups. In 2017, Ahmed et al. [2] introduced the concept of *n*-dimensional fuzzy sets, fuzzy hyperideals and fuzzy prime hyperideals in semihyperrings with identity. Kar and Purkait [6] defined interval-valued (i.v.) fuzzy k-quasi ideals and i.v. fuzzy k-bi-ideals of semihyperrings. In 2018, Sarkar and Kar [11] introduced and studied the notion of interval-valued (in short, (i-v)) prime fuzzy hyperideals in semihypergroups. In 2020, Yairayong [13] introduced

DOI: 10.24507/icicel.15.11.1169

and studied the fuzzy LA-subhypersemigroups, left fuzzy hyperideal (right fuzzy hyperideal, fuzzy hyperideal), left fuzzy hypersimples and fuzzy hyper bi-ideals of fuzzy LAhypersemigroups and obtained its basic results. In [14], Yiarayong studied the notion of picture fuzzy subsemigroups.

In this paper, our aim is to introduce the concept of interval-valued fuzzy hypersemigroups. We also discuss some basic properties of interval-valued fuzzy hypersemigroups and characterize the interval-valued fuzzy hypersemigroups. Moreover, we define intervalvalued fuzzy subhypersemigroups, left interval-valued fuzzy hyperideal (right intervalvalued fuzzy hyperideal, interval-valued fuzzy hyperideal), interval-valued fuzzy hyper bi-ideals and interval-valued fuzzy hyper interior ideals in interval-valued fuzzy hypersemigroups and some properties of them are obtained. At the end we characterize intervalvalued fuzzy hyper interior ideals and interval-valued fuzzy hyper bi-ideals.

2. Interval-Valued Fuzzy Hypersemigroups. In 2008, Sen et al. [12] introduced the concept of fuzzy hypersemigroups and studied its different properties. We need to extend the fuzzy hyperoperations to the interval-valued fuzzy hyperoperations.

Let S be a non empty set and $\mathcal{F}(S)$ denotes the set of all interval-valued fuzzy subset of S. An **interval-valued fuzzy hyperoperation** on S is a mapping $\circ : S \times S \to \widetilde{\mathcal{F}(S)}$ written as $(x, y) \mapsto \widetilde{x} \circ \widetilde{y}$. A non empty S together with an interval-valued fuzzy hyperoperation " \circ " is called an **interval-valued fuzzy hypergroupoid**.

Based on [12], we can extend the concept of fuzzy hypersemigroups to the concept of interval-valued fuzzy hypersemigroups in the following way.

Definition 2.1. An interval-valued fuzzy hypergroupoid (S, \circ) is called an intervalvalued fuzzy hypersemigroup if for all $x, y, z \in S$, $(\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z} = \widetilde{x} \circ (\widetilde{y} \circ \widetilde{z})$, where for any $\widetilde{\mu} \in \widetilde{\mathcal{F}(S)}$

$$(\widetilde{x} \circ \widetilde{\mu})(a) = \begin{cases} \bigvee_{s \in S} (\widetilde{x} \circ \widetilde{s})(a) \land \widetilde{\mu}(s); & \text{if } \widetilde{\mu} \neq \widetilde{0} \\ \underset{\widetilde{0};}{s \in S} & \text{otherwise} \end{cases}$$

and

$$(\widetilde{\mu} \circ \widetilde{x})(a) = \begin{cases} \bigvee_{s \in S} \widetilde{\mu}(s) \land (\widetilde{s} \circ \widetilde{x})(a); & \text{if } \widetilde{\mu} \neq \widetilde{0} \\ \underset{s \in S}{\widetilde{0};} & \text{otherwise.} \end{cases}$$

The following four theorems provide us some examples of interval-valued fuzzy hypersemigroups.

Theorem 2.1. Let S be a non empty set. Define an interval-valued fuzzy hyperoperation " \circ " on S by $\tilde{x} \circ \tilde{y} = \tilde{\chi}_{\{x,y\}}$ for all $x, y \in S$, where $\tilde{\chi}_{\{x,y\}}$ denotes the characteristic function of the set $\{x, y\}$. Then (S, \circ) is an interval-valued fuzzy hypersemigroup.

Proof: Let $a, x, y, z \in S$. If $a \in \{x, y, z\}$, then

(

$$\begin{aligned} (\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) &= \left(\widetilde{\chi}_{\{x,y\}} \circ \widetilde{z}\right)(a) \\ &= \bigvee_{s \in S} \left(\widetilde{\chi}_{\{x,y\}}(s) \wedge (\widetilde{s} \circ \widetilde{z})(a)\right) \\ &= \widetilde{\chi}_{\{x,y,z\}}(a) \\ &= \widetilde{1} \end{aligned}$$

and

$$(\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a) = (\widetilde{x} \circ \widetilde{\chi}_{\{y,z\}})(a)$$
$$= \bigvee_{s \in S} \left((\widetilde{x} \circ \widetilde{s})(a) \wedge \widetilde{\chi}_{\{y,z\}}(s) \right)$$

$$= \widetilde{\chi}_{\{x,y,z\}}(a)$$
$$= 1.$$

It follows that $(\tilde{x} \circ \tilde{y}) \circ \tilde{z} = \tilde{x} \circ (\tilde{y} \circ \tilde{z})$. Assume that $a \notin \{x, y, z\}$. Similarly, we can show that

$$\begin{aligned} ((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) &= \widetilde{\chi}_{\{x,y,z\}}(a) \\ &= \widetilde{0} \\ &= \widetilde{\chi}_{\{x,y,z\}}(a) \\ &= (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a). \end{aligned}$$

Hence, (S, \circ) is an interval-valued fuzzy hypersemigroup.

According to ([12], Example 2.6), if (S, \cdot) is a semigroup, then (S, \circ) is a fuzzy hypersemigroup. Now, we have

Theorem 2.2. Let S be a semigroup. Define an interval-valued fuzzy hyperoperation " \circ " on S by $\tilde{x} \circ \tilde{y} = \tilde{\chi}_{\{xy\}}$ for all $x, y \in S$, where $\tilde{\chi}_{\{xy\}}$ denotes the characteristic function of the set $\{xy\}$. Then (S, \circ) is an interval-valued fuzzy hypersemigroup.

Proof: Let $a, x, y, z \in S$. Then

$$((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) = (\widetilde{\chi}_{\{xy\}} \circ \widetilde{z})(a)$$

$$= \bigvee_{s \in S} (\widetilde{\chi}_{\{xy\}}(s) \land (\widetilde{s} \circ \widetilde{z})(a))$$

$$= (\widetilde{x}\widetilde{y} \circ \widetilde{z})(a)$$

$$= \widetilde{\chi}_{\{(xy)z\}}(a)$$

$$= (\widetilde{x} \circ \widetilde{y}\widetilde{z})(a)$$

$$= \bigvee_{s \in S} ((\widetilde{x} \circ \widetilde{s})(a) \land \widetilde{\chi}_{\{yz\}}(s))$$

$$= (\widetilde{x} \circ \widetilde{\chi}_{\{yz\}})(a)$$

$$= (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a).$$

Hence, (S, \circ) is an interval-valued fuzzy hypersemigroup.

Note that if S is a semigroup, then S is an interval-valued fuzzy hypersemigroup. However, in general, the converse is not true as can be shown in the following example.

Example 2.1. Let $(\{5, 6, 7, \ldots\}, \cdot)$ be a semigroup. By Theorem 2.2, $(\{5, 6, 7, \ldots\}, \circ)$ is an interval-valued fuzzy hypersemigroup which is not always a semigroup.

In case of a semigroup with identity, we have the following result.

Corollary 2.1. Let S be a semigroup with identity. Define an interval-valued fuzzy hyperoperation " \circ " on S by $\tilde{x} \circ \tilde{y} = \tilde{\chi}_{\{xy\}}$ for all $x, y \in S$, where $\chi_{\{xy\}}$ denotes the characteristic function of the set $\{xy\}$. Then (S, \circ) is an interval-valued fuzzy hypersemigroup with identity.

Theorem 2.3. Let S be a semigroup and $\widetilde{0} \neq \widetilde{\mu} \in \widetilde{\mathcal{F}(S)}$. Define an interval-valued fuzzy hyperoperation " \circ " on S by

$$(\widetilde{x} \circ \widetilde{y})(a) = \begin{cases} \widetilde{\mu}(x) \land \widetilde{\mu}(y); & \text{if } a = xy \\ \widetilde{0}; & \text{otherwise} \end{cases}$$

for all $x, y \in S$. If $\tilde{\mu}$ is an interval-valued fuzzy semigroup on S, then (S, \circ) is an intervalvalued fuzzy hypersemigroup.

 \square

Proof: Let $a, x, y, z \in S$. It is easy to see that,

(

$$\begin{aligned} (\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) &= \bigvee_{s \in S} \left((\widetilde{x} \circ \widetilde{y})(s) \land (\widetilde{s} \circ \widetilde{z})(a) \right) \\ &= \left(\widetilde{\mu}(x) \land \widetilde{\mu}(y) \right) \land (\widetilde{xy} \circ \widetilde{z})(a) \end{aligned}$$

and

for all a, x, y, z

$$\begin{aligned} (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a) &= \bigvee_{s \in S} \left((\widetilde{x} \circ \widetilde{s})(a) \land (\widetilde{y} \circ \widetilde{z})(s) \right) \\ &= (\widetilde{x} \circ \widetilde{y} \widetilde{z})(a) \land (\widetilde{\mu}(y) \land \widetilde{\mu}(z)) \\ \in S. \text{ If } a &= (xy)z, \text{ then } a &= x(yz). \text{ By assumption,} \\ ((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) &= (\widetilde{\mu}(x) \land \widetilde{\mu}(y)) \land (\widetilde{xy} \circ \widetilde{z})(a) \\ &= \widetilde{\mu}(x) \land \widetilde{\mu}(y) \land \widetilde{\mu}(x) \land \widetilde{\mu}(z) \end{aligned}$$

$$= \widetilde{\mu}(x) \wedge \widetilde{\mu}(y) \wedge \widetilde{\mu}(xy) \wedge \widetilde{\mu}(z)$$

$$= \widetilde{\mu}(x) \wedge \widetilde{\mu}(y) \wedge \widetilde{\mu}(z)$$

$$= \widetilde{\mu}(x) \wedge \widetilde{\mu}(yz) \wedge \widetilde{\mu}(y) \wedge \widetilde{\mu}(z)$$

$$= (\widetilde{x} \circ \widetilde{yz})(a) \wedge (\widetilde{\mu}(y) \wedge \widetilde{\mu}(z))$$

$$= (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a).$$

Assume that $a \neq (xy)z$. Thus $a \neq x(yz)$. Clearly, $((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) = \widetilde{0} = (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a)$. Hence, (S, \circ) is an interval-valued fuzzy hypersemigroup.

We continue this section with the following theorems.

Theorem 2.4. Let $S = \mathbb{Z}^- \cup \{0, 1, ..., n\}$. Define an interval-valued fuzzy hyperoperation " \circ " on S by $\tilde{x} \circ \tilde{y} = \tilde{\chi}_{\tilde{x} \vee \tilde{y}}$ for all $x, y \in S$. Then (S, \circ) is an interval-valued fuzzy hypersemigroup.

Proof: Let $a, x, y, z \in S$. Then

$$\begin{aligned} ((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) &= (\widetilde{\chi}_{\widetilde{x} \lor \widetilde{y}} \circ \widetilde{z})(a) \\ &= \bigvee_{s \in S} (\widetilde{\chi}_{\widetilde{x} \lor \widetilde{y}}(s) \land (\widetilde{s} \circ \widetilde{z})(a)) \\ &= ((\widetilde{x} \lor \widetilde{y}) \circ \widetilde{z})(a) \\ &= \widetilde{\chi}_{(\widetilde{x} \lor \widetilde{y}) \lor \widetilde{z}}(a) \\ &= \widetilde{\chi}_{\widetilde{x} \lor (\widetilde{y} \lor \widetilde{z})}(a) \\ &= (\widetilde{x} \circ (\widetilde{y} \lor \widetilde{z}))(a) \\ &= (\widetilde{x} \circ \widetilde{\chi}_{\widetilde{y} \lor \widetilde{z}})(a) \land \chi_{\widetilde{y} \lor \widetilde{z}}(s)) \\ &= (\widetilde{x} \circ \widetilde{\chi}_{\widetilde{y} \lor \widetilde{z}})(a) \\ &= (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a). \end{aligned}$$

Hence, (S, \circ) is an interval-valued fuzzy hypersemigroup.

Our main aim in the following is to study the notion of interval-valued fuzzy hyper-semigroups.

Theorem 2.5. Let (S, \circ) be a fuzzy hypersemigroup. Define an interval-valued fuzzy hyperoperation "•" on S by $\tilde{x} \bullet \tilde{y} = [0, x \circ y]$ for all $x, y \in S$. Then (S, \bullet) is an interval-valued fuzzy hypersemigroup.

Proof: Let $a, x, y, z \in S$. Then

$$((\widetilde{x} \bullet \widetilde{y}) \bullet \widetilde{z})(a) = \bigvee_{s \in S} (\widetilde{x} \bullet \widetilde{y}) (s) \land (\widetilde{s} \bullet \widetilde{z}) (a)$$
$$= \bigvee_{s \in S} [0, (x \circ y)(s)] \land [0, (s \circ z)(a)]$$

$$= [0, ((x \circ y) \circ z)(a)]$$

$$= [0, (x \circ (y \circ z))(a)]$$

$$= \bigvee_{s \in S} [0, (x \circ s)(a)] \land [0, (y \circ z)(s)]$$

$$= \bigvee_{s \in S} (\widetilde{x} \bullet \widetilde{s}) (a) \land (\widetilde{y} \bullet \widetilde{z}) (s)$$

$$= (\widetilde{x} \bullet (\widetilde{y} \bullet \widetilde{z}))(a).$$

Hence, (S, \bullet) is an interval-valued fuzzy hypersemigroup.

Note that if S is a semigroup, then S is an interval-valued fuzzy hypersemigroup. However, in general, the converse is not true as can be shown in the following example.

Example 2.2. Let $(\{5, 6, 7, ...\}, \cdot)$ be a semigroup. Define a fuzzy hyperoperation " \circ " on S by $x \star y = \chi_{\{xy\}}$ for all $x, y \in S$. It is easy to see that, (S, \circ) is a fuzzy hypersemigroup (see [12]). By Theorem 2.5, $(\{5, 6, 7, ...\}, \bullet)$ is an interval-valued fuzzy hypersemigroup which is not always a semigroup.

3. **Product of Interval-Valued Fuzzy Hypergroupoids.** Now, we introduce the following useful concept.

Definition 3.1. Let (S, \circ) be an interval-valued fuzzy hypergroupoid and let $\widetilde{\mu}, \widetilde{\nu} \in \widetilde{\mathcal{F}(S)}$. The **product** $\widetilde{\mu} \circ \widetilde{\nu}$ is defined by $(\widetilde{\mu} \circ \widetilde{\nu})(a) = \bigvee_{x,y \in S} (\widetilde{\mu}(x) \land (\widetilde{x} \circ \widetilde{y})(a) \land \widetilde{\nu}(y))$ for all $a \in S$.

The following result holds.

Theorem 3.1. Let (S, \circ) be an interval-valued fuzzy hypersemigroup. Then the following statements hold:

- 1) $\widetilde{\chi}_x \circ \widetilde{\chi}_y = \widetilde{x} \circ \widetilde{y} \text{ for all } x, y \in S.$
- 2) For every $x \in S$, $\widetilde{\chi}_S \circ \widetilde{x} = \widetilde{S} \circ \widetilde{x}$ and $\widetilde{x} \circ \widetilde{\chi}_S = \widetilde{x} \circ \widetilde{S}$.
- 3) For every $\widetilde{\mu} \in \widetilde{\mathcal{F}(S)}$, $\widetilde{\chi}_S \circ \widetilde{\mu} = \widetilde{S} \circ \widetilde{\mu}$ and $\widetilde{\mu} \circ \widetilde{\chi}_S = \widetilde{\mu} \circ \widetilde{S}$.

Proof: 1) Let $a, x, y \in S$. Then

$$\widetilde{\chi}_x \circ \widetilde{\chi}_y(a) = \bigvee_{\substack{r,s \in S \\ \widetilde{1} \land (\widetilde{x} \circ \widetilde{y})(a) \land \widetilde{1} \\ = (\widetilde{x} \circ \widetilde{y})(a).} (\widetilde{\chi}_x(r) \land (\widetilde{r} \circ \widetilde{s})(a) \land \widetilde{1}$$

Hence, $\widetilde{\chi}_x \circ \widetilde{\chi}_y = \widetilde{x} \circ \widetilde{y}$. 2) Let $a, x \in S$. Then

$$(\widetilde{\chi}_{S} \circ \widetilde{x})(a) = \bigvee_{s \in S} (\widetilde{\chi}_{S}(s) \wedge (\widetilde{s} \circ \widetilde{x})(a))$$
$$= \bigvee_{s \in S} \left(\widetilde{1} \wedge (\widetilde{s} \circ \widetilde{x})(a) \right)$$
$$= \bigvee_{s \in S} (\widetilde{s} \circ \widetilde{x}) (a)$$
$$= \left(\widetilde{S} \circ \widetilde{x} \right) (a).$$

Hence, $\widetilde{\chi}_S \circ \widetilde{x} = \widetilde{S} \circ \widetilde{x}$. Similarly we can show that $\widetilde{x} \circ \widetilde{\chi}_S = \widetilde{x} \circ \widetilde{S}$.

3) Let $\widetilde{\mu} \in \mathcal{F}(S)$ and $a \in S$. Then

$$\begin{aligned} (\widetilde{\chi}_{S} \circ \widetilde{\mu})(a) &= \bigvee_{r,s \in S} \left(\widetilde{\chi}_{S}(r) \wedge (\widetilde{r} \circ \widetilde{s})(a) \wedge \widetilde{\mu}(s) \right) \\ &= \bigvee_{r,s \in S} \left(\widetilde{1} \wedge (\widetilde{r} \circ \widetilde{s})(a) \wedge \widetilde{\mu}(s) \right) \\ &= \bigvee_{r,s \in S} \left((\widetilde{r} \circ \widetilde{s})(a) \wedge \widetilde{\mu}(s) \right) \\ &= \bigvee_{r \in S} \left((\widetilde{r} \circ \widetilde{\mu})(a) \right) \\ &= \left(\widetilde{S} \circ \widetilde{\mu} \right) (a). \end{aligned}$$

Hence, $\widetilde{\chi}_S \circ \widetilde{\mu} = \widetilde{S} \circ \widetilde{\mu}$. Similarly we can show that $\widetilde{\mu} \circ \widetilde{\chi}_S = \widetilde{\mu} \circ \widetilde{S}$. Furthermore, we have the following theorem.

Theorem 3.2. Let S be an interval-valued fuzzy hypersemigroup and $\tilde{\mu}, \tilde{\nu}, \tilde{\lambda} \in \widetilde{\mathcal{F}(S)}$. Then the following statements hold:

- 1) For every $x, y \in S$, $(\tilde{x} \circ \tilde{y}) \circ \tilde{\mu} = \tilde{x} \circ (\tilde{y} \circ \tilde{\mu})$. 2) For every $x, y \in S$, $(\tilde{x} \circ \tilde{\mu}) \circ \tilde{y} = \tilde{x} \circ (\tilde{\mu} \circ \tilde{y})$. 3) For every $x, y \in S$, $(\tilde{\mu} \circ \tilde{x}) \circ \tilde{y} = \tilde{\mu} \circ (\tilde{x} \circ \tilde{y})$. 4) For every $x \in S$, $(\tilde{\mu} \circ \tilde{\nu}) \circ \tilde{x} = \tilde{\mu} \circ (\tilde{\nu} \circ \tilde{x})$. 5) For every $x \in S$, $(\tilde{\mu} \circ \tilde{x}) \circ \tilde{\nu} = \tilde{\mu} \circ (\tilde{x} \circ \tilde{\nu})$. 6) For every $x \in S$, $(\tilde{x} \circ \tilde{\mu}) \circ \tilde{\nu} = \tilde{x} \circ (\tilde{\mu} \circ \tilde{\nu})$.
- 7) $(\widetilde{\mu} \circ \widetilde{\nu}) \circ \widetilde{\lambda} = \widetilde{\mu} \circ \left(\widetilde{\nu} \circ \widetilde{\lambda}\right).$

Proof: 1) Let $a, x, y \in S$ and $\widetilde{\mu} \in \widetilde{\mathcal{F}(S)}$. Then

$$\begin{split} ((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{\mu})(a) &= \bigvee_{r \in S} \left(((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{r})(a) \wedge \widetilde{\mu}(r) \right) \\ &= \bigvee_{r \in S} \left((\widetilde{x} \circ (\widetilde{y} \circ \widetilde{r}))(a) \wedge \widetilde{\mu}(r) \right) \\ &= \bigvee_{r,s \in S} \left((\widetilde{x} \circ \widetilde{s})(a) \wedge (\widetilde{y} \circ \widetilde{r})(s) \wedge \widetilde{\mu}(r) \right) \\ &= \bigvee_{r,s \in S} \left((\widetilde{x} \circ \widetilde{s})(a) \wedge (\widetilde{y} \circ \widetilde{\mu})(s) \right) \\ &= (\widetilde{x} \circ (\widetilde{y} \circ \widetilde{\mu}))(a). \end{split}$$

Hence, $(\widetilde{x} \circ \widetilde{y}) \circ \widetilde{\mu} = \widetilde{x} \circ (\widetilde{y} \circ \widetilde{\mu})$. 2)-7) The proof is similar to 1).

Remark 3.1. Let S be an interval-valued fuzzy hypersemigroup. Then by Theorem 3.2, $(\widetilde{\mathcal{F}(S)}, \circ)$ is a semigroup.

In case of an interval-valued fuzzy hypersemigroup with identity, we have the following result.

Corollary 3.1. Let S be an interval-valued fuzzy hypersemigroup with identity. Then the following statements hold:

- 1) $\tilde{e} \circ \tilde{\mu} = \tilde{\mu}$ and $\tilde{\mu} \circ \tilde{e} = \tilde{\mu}$ for all $\tilde{\mu} \in \mathcal{F}(S)$. 2) $\tilde{e} \circ (\tilde{x} \circ \tilde{y}) = \tilde{x} \circ \tilde{y}$ and $(\tilde{x} \circ \tilde{y}) \circ \tilde{e} = \tilde{x} \circ \tilde{y}$ for all $x, y \in S$.
- 3) $\widetilde{x} \circ (\widetilde{e} \circ \widetilde{y}) = \widetilde{x} \circ \widetilde{y}$ and $\widetilde{x} \circ (\widetilde{y} \circ \widetilde{e}) = \widetilde{x} \circ \widetilde{y}$ for all $x, y \in S$.

Proof: 1) Let $a \in S$ and $\widetilde{\mu} \in \widetilde{\mathcal{F}(S)}$. Then

$$\begin{aligned} (\widetilde{e} \circ \widetilde{\mu})(a) &= \bigvee_{r \in S} \left((\widetilde{e} \circ \widetilde{r})(a) \wedge \widetilde{\mu}(r) \right) \\ &= \widetilde{1} \wedge \widetilde{\mu}(a) \\ &= \widetilde{\mu}(a). \end{aligned}$$

Hence, $\tilde{e} \circ \tilde{\mu} = \tilde{\mu}$. Similarly we can show that $\tilde{\mu} \circ \tilde{e} = \tilde{\mu}$.

- 2) The proof is similar to part 1).
- 3) Let $a, x, y \in S$. Then

$$\begin{aligned} (\widetilde{x} \circ (\widetilde{e} \circ \widetilde{y}))(a) &= \bigvee_{s \in S} \left((\widetilde{x} \circ \widetilde{s})(a) \land (\widetilde{e} \circ \widetilde{y})(s) \right) \\ &= (\widetilde{x} \circ \widetilde{y})(a) \land \widetilde{1} \\ &= (\widetilde{x} \circ \widetilde{y})(a). \end{aligned}$$

Hence, $\widetilde{x} \circ (\widetilde{e} \circ \widetilde{y}) = \widetilde{x} \circ \widetilde{y}$. Similarly we can show that $\widetilde{x} \circ (\widetilde{y} \circ \widetilde{e}) = \widetilde{x} \circ \widetilde{y}$.

Let S be a semihypergroup, endowed with an interval-valued fuzzy hypersemigroups " \circ " and for all $x, y \in S$, consider the $\tilde{\alpha}$ -cuts

$$(x \circ y)_{\widetilde{\alpha}} := \{ s \in S : (\widetilde{x} \circ \widetilde{y})(s) \ge \widetilde{\alpha} \}$$

of $\tilde{x} \circ \tilde{y}$, where $\tilde{\alpha} \in D[0, 1]$. For all $\tilde{\alpha} \in D[0, 1]$, we define the following crisp hyperoperation on S: $x \circ_{\widetilde{\alpha}} y := (x \circ y)_{\widetilde{\alpha}}$.

Theorem 3.3. Let S be a semihypergroup and $x \in S$. Then $\widetilde{\chi}_S = \widetilde{x} \circ \widetilde{S}$ if and only if $S = x \circ_{\widetilde{\alpha}} S$ for all $\widetilde{\alpha} \in D[0,1]$.

Proof: Suppose that $\widetilde{\chi}_S = \widetilde{x} \circ \widetilde{S}$ for all $x \in S$. Let $a \in S$ and $\widetilde{\alpha} \in D[0,1]$. By assumption,

$$\bigvee_{s \in S} (\widetilde{x} \circ \widetilde{s}) (a) = \widetilde{\chi}_S(a)$$
$$= \widetilde{1}$$
$$> \widetilde{\alpha}.$$

Then there exists $r \in S$ such that $(\tilde{x} \circ \tilde{r})(a) \geq \tilde{\alpha}$, which means that $a \in x \circ_{\tilde{\alpha}} r$. Hence, $S = x \circ_{\widetilde{\alpha}} S.$

Conversely assume that, $S = x \circ_{\widetilde{\alpha}} S$ for all $\widetilde{\alpha} \in D[0,1]$. By assumption, $S = x \circ_{\widetilde{1}} S$. Then there exists $s \in S$ such that $a \in x \circ_{\widetilde{1}} s$ for all $a \in S$, which means that $(\widetilde{x} \circ \widetilde{s})(a) = \widetilde{1}$. Consequently, $\widetilde{\chi}_S = \widetilde{x} \circ \widetilde{S}$.

Now the following theorem is one of the prominent characterization of the intervalvalued fuzzy semihypergroup.

Theorem 3.4. Let S be a non empty set and $x, y, z \in S$, $\tilde{\alpha} \in D[0, 1]$. Then the following statements hold:

1) $((\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) \ge \widetilde{\alpha} \text{ if and only if } a \in (\widetilde{x} \circ_{\widetilde{\alpha}} \widetilde{y}) \circ_{\widetilde{\alpha}} \widetilde{z}.$ 2) $(\widetilde{x} \circ (\widetilde{y} \circ \widetilde{z}))(a) \ge \widetilde{\alpha}$ if and only if $a \in \widetilde{x} \circ_{\widetilde{\alpha}} (\widetilde{y} \circ_{\widetilde{\alpha}} \widetilde{z})$.

Proof: 1) Let $a, x, y, z \in S$ and $\widetilde{\alpha} \in D[0, 1]$. It is easy to see that

$$\begin{split} f(\widetilde{x} \circ \widetilde{y}) \circ \widetilde{z})(a) \; &=\; \bigvee_{s \in S} \left((\widetilde{x} \circ \widetilde{y})(s) \land (\widetilde{s} \circ \widetilde{z})(a) \right) \\ &\geq \; \widetilde{\alpha} \end{split}$$

if and only if there exists $r \in S$ such that $r \in x \circ_{\alpha} y$ and $a \in r \circ_{\widetilde{\alpha}} z$, which means that $(\widetilde{x} \circ \widetilde{y})(r) \geq \widetilde{\alpha}$ and $(\widetilde{r} \circ \widetilde{z})(a) \geq \widetilde{\alpha}$. This completes the proof.

2) The proof is similar to part 1).

(

Now by using the above Theorem 3.4, we can easily prove the following results.

 \square

Theorem 3.5. (S, \circ) is an interval-valued fuzzy semihypergroup if and only if $(S, \circ_{\widetilde{\alpha}})$ is a semihypergroup for all $\widetilde{\alpha} \in D[0, 1]$.

4. **Conclusion.** In this study the structure of interval-valued fuzzy hypersemigroups with special properties always plays an important role. Moreover, we define interval-valued fuzzy subhypersemigroups, interval-valued fuzzy hyperideal (right interval-valued fuzzy hyperideal, left fuzzy hyperideal), interval-valued fuzzy hyper bi-ideals and interval-valued fuzzy hyper interior ideals in interval-valued fuzzy hypersemigroups and some properties of them are obtained.

REFERENCES

- S. Abdullah, M. Aslam and K. Hila, Interval valued intuitionistic fuzzy sets in Γ-semihypergroups, Int. J. Mach. Learn. & Cyber., vol.7, pp.217-228, 2016.
- [2] A. Ahmed, M. Aslam and S. Abdullah, n-dimensional fuzzy hyperideals in semihyperrings, Int. J. Mach. Learn. & Cyber., vol.8, pp.255-262, 2017.
- [3] B. Davvaz, Extensions of fuzzy hyperideals in H_v -semigroups, Soft Comput., vol.11, pp.829-837, 2007.
- [4] B. Davvaz and V. L. Fotea, Applications of interval valued fuzzy n-ary polygroups with respect to t-norms (t-conorms), Computers and Mathematics with Applications, vol.57, pp.1413-1424, 2009.
- [5] B. Davvaz, O. Kazanc and S. Yamak, Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups, Neural Comput. & Applic., vol.18, pp.903-911, 2009.
- [6] S. Kar and S. Purkait, On k-regularities in fuzzy semihyperrings, Int. J. Appl. Comput. Math., vol.3, pp.1121-1141, 2017.
- [7] S. Kar, P. Sarkar and V. L. Fotea, On some interval-valued fuzzy hyperideals of semihypergroups, *Afr. Mat.*, vol.26, pp.1171-1186, 2015.
- [8] O. Kazanci, B. Davvaz and S. Yamak, Fuzzy n-ary hypergroups related to fuzzy points, Neural Comput. & Applic., vol.19, pp.649-655, 2010.
- [9] M. Khan, M. Gulistan, N. Yaqoob and F. Hussain, General cubic hyperideals of LA-semihypergroups, *Afr. Mat.*, vol.27, pp.731-751, 2016.
- [10] T. Nozari, Commutative fundamental relation in fuzzy hypersemigroups, Italian Journal of Pure and Applied Mathematics, vol.36, pp.455-464, 2016.
- [11] P. Sarkar and S. Kar, A study on(*i-v*) prime fuzzy hyperideal of semihypergroups, Afr. Mat., vol.29, pp.81-96, 2018.
- [12] M. K. Sen, R. Ameri and G. Chowdhury, Fuzzy hypersemigroups, Soft Comput., vol.12, pp.891-900, 2008.
- [13] P. Yiarayong, Semigroup characterized by picture fuzzy sets, International Journal of Innovative Computing, Information and Control, vol.16, no.6, pp.2121-2130, 2020.
- [14] P. Yiarayong, Applications of left almost subhypersemigroups to fuzzy subsets, *Engineering Letters*, vol.28, no.1, pp.137-147, 2020.
- [15] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, *Inf. Sci.*, vol.8, pp.199-249, 1975.