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Abstract. This paper addresses a two-stage finite memory structure (FMS) smoother
using the chi-square test statistic for discrete-time systems with a control input. An alter-
native FMS smoother is firstly developed from the conditional density of the current state
given finite past measurements, which is called the Bayesian FMS smoother. According
to the presence or absence of uncertainty, one of the primary Bayesian FMS smoother
or the secondary Bayesian FMS smoother works selectively to obtain a valid estimate. In
order to indicate presence or absence of uncertainty, operate the suitable one from two
smoothers, and then obtain the valid smoothing estimate, declaration rule and test vari-
ables are defined. Simulation results validate the effectiveness of the proposed two-stage
Bayesian FMS smoother.
Keywords: Bayesian estimation, Finite memory structure, Smoother, Temporary un-
certainty, Test variable

1. Introduction. Finite memory structure (FMS) filter [1,2] and smoother [3-5] have
been applied successfully for various engineering problems. Even if FMS filter and smoo-
ther can show greater noise suppression as the window length increases, the tracking speed
of the state estimate for the actual state variable worsens in proportion to the window
length, which can degrade the estimation performance of FMS filter and smoother. This
implies FMS filter and smoother require a compromise between the noise suppression and
the tracking speed of the state estimate. According to this observation, the estimation
error of FMS filter and smoother with a short measurement window length is smaller
than that of the FMS filter with a long measurement window length, while temporary
uncertainty exists. In addition, the convergence of the estimation error for FMS filter
and smoother with a short window length is much faster than that of FMS filter and
smoother with a long window length when temporary uncertainty is disappearing. This
means that FMS filter and smoother with a short window length are superior in terms
of the tracking ability. Thus, if FMS filter and smoother with a short window length are
applied to temporarily uncertain systems, they can outperform FMS filter and smoother
with a long window length, although the robustness is not considered in the designed
process.

To verify the above observation, the two-stage estimation using two FMS filters with
different measurement windows was developed [6]. However, the two-stage estimation
approach using FMS smoothers has not been addressed so far. The FMS smoother in
[3-5] is known to have the following common advantages. The smoother generally utilizes
more measurement information than the filter to provide state estimates, which can give
more accurate estimation performance than the filter. In addition, since the smoother
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provides state estimates at the delayed time using measurement information up to the
current time, measurement information can be reflected in advance in the presence of the
state change, which can give more fast convergence than the filter. If these superiorities of
the FMS smoother can be verified in practical applications, this might be very informative
for engineers and researchers in control and estimation areas, which is a main motivation of
this paper. In addition, the control input term has not been considered in the existing two-
stage estimation [6]. Actually, the state-space model with control input can be often used
for various control engineering problems such as electric motor system, and automotive
suspension system [5,7]. Moreover, it would be very meaningful if the Bayesian estimation
strategy was considered to the FMS smoother design just like the FMS filter design of
[6,8].
Therefore, in this paper, a two-stage FMS smoother with two kinds of measurement

windows is proposed using the chi-square test statistic for discrete-time systems with a
control input. Firstly, an alternative FMS smoother, called the Bayesian FMS smoother,
is developed from the conditional density of the current state given finite past measure-
ments. Then, one of the two smoothers, the primary Bayesian FMS smoother and the
secondary Bayesian FMS smoother, with different measurement windows is operated se-
lectively to obtain the valid estimate according to presence or absence of uncertainty. The
primary Bayesian FMS smoother is selected for the nominal system and the secondary
Bayesian FMS smoother is selected for the temporarily uncertain system, respectively.
A declaration rule is defined to indicate the presence or absence of uncertainty, operate
the suitable one from two smoothers, and then obtain the valid smoothing estimate. A
test variable for the declaration rule is developed using a chi-square test statistic from
the estimation error and compared with a precomputed threshold. Finally, computer
simulations are performed for an electric motor system to verify the proposed two-stage
Bayesian FMS smoother and compare with the standard FMS smoother as well as the
existing two-stage FMS filter. Through computer simulation works, it is shown that the
proposed smoother works well for the nominal system as well as the temporarily uncertain
system. It is also shown that the proposed smoother can be remarkably better than the
existing two-stage FMS filter for the temporarily uncertain system.
This paper is organized as follows. In Section 2, the Bayesian FMS smoother from

conditional density of lagged state is developed. In Section 3, the two-stage Bayesian
FMS smoother is proposed. In Section 4, computer simulations are performed. Finally,
conclusions are presented in Section 5.

2. Bayesian Finite Memory Structure Smoother from Conditional Density of

Lagged State. A general discrete-time state-space model with a control input is consid-
ered as follows:

xi+1 = Axi +Bui +Gwi, (1)

zi = Cxi + vi, (2)

where xi ∈ ℜn is the unknown state vector, ui ∈ ℜn is the control input vector, and
zi ∈ ℜq is the sensor measurement vector. The state vector xi0 at the initial time i0 of
system is a random variable with a mean x̄i0 and a covariance Pi0 . A dynamic system
can often contain noises such as the system noise wi ∈ ℜp and the measurement noise
vi ∈ ℜq. These noises are random variables with zero-mean white Gaussian and are
mutually uncorrelated. In addition, these noises are also uncorrelated with the initial
state vector xi0 . The covariances of noises wi and vi are denoted by Q and R, respectively
and they are assumed to be positive definite matrices.
In this section, an alternative FMS smoother to estimate the state xi−d at the lagged

time i − d is developed using only finite measurements as well as inputs on the most
recent window [i − M, i]. The lagged time i − d means there is a fixed delay between
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the measurement and the availability of its estimate. The positive integer d is the delay
length satisfying 0 ≤ d < M and equal to the number of discrete time steps between the
lagged time i− d at which the state is to be estimated and the current time i of the last
measurement used in estimating it. Finite measurements and inputs on the most recent
window [i−M, i] are denoted by Zi and Ui, respectively, and represented by

ZM
△

=
[
zTi−M zTi−M+1 . . . z

T
i−1

]T
, UM

△

=
[
uT
i−M uT

i−M+1 . . . u
T
i−1

]T
. (3)

Using ZM and UM , the discrete-time state-space model (1) and (2) can be represented in
the following regression form

ZM − Ξ̄MUM = Γ̄Mxi−M + Λ̄MWM + VM , (4)

where WM and VM have the same form as (3) for wi, vi, respectively, and matrices Γ̄M ,
Ξ̄M , Λ̄M are as follows:

Γ̄M
△

=









C

CA
...

CAM−2

CAM−1









, Ξ̄M
△

=









0 0 · · · 0 0
CB 0 · · · 0 0
...

...
...

...
...

CAM−3B CAM−4B · · · 0 0
CAM−2B CAM−3B · · · CB 0









,

Λ̄M
△
=









0 0 · · · 0 0
CG 0 · · · 0 0
...

...
...

...
...

CAM−3G CAM−4G · · · 0 0
CAM−2G CAM−3G · · · CG 0









.

From the discrete-time state-space model (1) and (2), the state xi−d at the lagged time
i− d is represented by

xi−d = AM−dxiM + Ξ̃MUM + Λ̃MWM , (5)

where

Ξ̃M
△

=



AM−d−1B · · · AB B

d
︷ ︸︸ ︷

0 0 · · · 0



 , Λ̃M
△

=



AM−d−1G · · · AG G

d
︷ ︸︸ ︷

0 0 · · · 0



 . (6)

Therefore, using (5), the regression form (4) can be expressed in terms with xi−d at the
lagged time i− d as follows:

ZM − ΞMUM = ΓMxi−d + ΛMWM + VM , (7)

where

ΓM
△

= Γ̄MA−(M−d), ΛM
△

= Λ̄M − Γ̄MA−(M−d)Λ̃M ,

ΞM
△

= Ξ̄M − Γ̄MA−(M−d)Ξ̃M . (8)

The noise term ΛMWM + VM in (7) is zero-mean white Gaussian as follows:

ΛMWM + VM ∼ N
(
ZM − ΞMUM ; 0,ΠM

)
, (9)

where N
(
ZM − ΞMUM ; 0,ΠM

)
denotes the Gaussian probability density function (pdf)

evaluated at ZM with zero-mean and covariance matrix

ΠM
△

= ΛM



diag(

M
︷ ︸︸ ︷

Q Q Q · · · Q)



ΛM
T +



diag(

M
︷ ︸︸ ︷

R R R · · · R)



 , (10)

where diag(Q Q Q · · · Q) and diag(R R R · · · R) denote block-diagonal matrices with
M elements of Q and R, respectively.
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As shown in Bayesian estimation strategy [2,6], the FMS smoother can be interested in
the pdf that is conditional on a finite past measurements and inputs ZM −ΞMUM on the
most recent window [i−M, i]. The most recent window [i−M, i] becomes the averaging
window of M points. To develop an alternative FMS smoother, called the Bayesian FMS
smoother, the conditional density of the state xi−d at the lagged time i − d given finite
measurements and inputs ZM − ΞMUM is derived.

Theorem 2.1. From the linearity described in (7), the conditional density of state xi−d at
the lagged time i− d given finite measurements and inputs ZM −ΞMUM has the following
expression:

p (xi−d|ZM − ΞMUM) = N (xi−d; x̂i−d,ΣM) , (11)

where N (xi−d; x̂i−d,ΣM) denotes the Gaussian pdf evaluated at xi−d with mean x̂i−d and
covariance matrix ΣM as follows:

x̂i−d =
(
ΓT
MΠ−1

M ΓM

)−1
ΓT
MΠ−1

M (ZM − ΞMUM), ΣM =
(
ΓT
MΠ−1

M ΓM

)−1
. (12)

Proof: Equation (7) can be represented by

ΓMxi−d = (ZM − ΞMUM )− (ΛMWM + VM). (13)

Then, multiplying both sides of (13) by
(
ΓT
MΠ−1

M ΓM

)−1
ΓT
MΠ−1

M

leads to

xi−d =
(
ΓT
MΠ−1

M ΓM

)−1
ΓT
MΠ−1

M [(ZM − ΞMUM)− (ΛMWM + VM)]. (14)

Hence, for given finite measurements and inputs ZM−ΞMUM , Equation (14) clearly means
that the state xi−d at the lagged time i− d is a multi-variate Gaussian with its mean

x̂i−d =
(
ΓT
MΠ−1

M ΓM

)−1
ΓT
MΠ−1

M (ZM − ΞMUM),

and covariance

ΣM =
[(
ΓT
MΠ−1

M ΓM

)−1
ΓT
MΠ−1

M

]

ΠM

[

Π−1
M ΓM

(
ΓT
MΠ−1

M ΓM

)−1
]

=
(
ΓT
MΠ−1

M ΓM

)−1 (
ΓT
MΠ−1

M ΓM

) (
ΓT
MΠ−1

M ΓM

)−1
=

(
ΓT
MΠ−1

M ΓM

)−1
.

Therefore, the conditional density of state xi−d at the lagged time i − d given finite
measurements and inputs ZM − ΞMUM has the following expression:

p(xi−d|ZM − ΞMUM) = N (xi−d; x̂i−d,ΣM).

This completes the proof. �

Therefore, from the conditional density (11) of state xi−d at the lagged time i− d, the
Bayesian FMS smoother with the following simple matrix form

x̂i−d =
(
ΓT
MΠ−1

M ΓM

)−1
ΓT
MΠ−1

M (ZM − ΞMUM) (15)

provides the state estimate x̂i−d conditional on finite measurements and inputs ZM −
ΞMUM .

3. Two-Stage Bayesian FMS Smoother. To deal with temporary uncertainties, how
to get a proper measurement window length M for the Bayesian FMS smoother might
be an important issue. The window length affects differently the performance of the
FMS smoother according to presence or absence of temporary uncertainties. FMS filter
and smoother are well known to have better noise suppression as the window length
grows. Hence, the noise suppression of the Bayesian FMS smoother can be closely related
to the window length. However, even if the Bayesian FMS smoother can show greater
noise suppression as the window length increases, the tracking speed of state estimate for
actual state variable worsens in proportion to the window length, which can degrade the
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estimation performance of the Bayesian FMS smoother. This means that the Bayesian
FMS smoother requires a compromise between the noise suppression and the tracking
speed of the state estimate.

According to the above observation, the estimation error of the Bayesian FMS smoother
with a short window length is smaller than that of the Bayesian FMS smoother with a long
window length while uncertainty exists. In addition, the convergence of the estimation
error for the Bayesian FMS smoother with a short window length is much faster than that
of the Bayesian FMS smoother with a long window length when temporary uncertainty is
disappearing. This means that the Bayesian FMS smoother with a short window length
is superior in terms of the tracking ability. Thus, although the Bayesian FMS smoother
with a short window length is designed without considering the robustness, the Bayesian
FMS smoother with a short window length can outperform the Bayesian FMS smoother
with a long window length when applied to temporarily uncertain systems. Meanwhile,
the Bayesian FMS smoother with a long window length can be better than the Bayesian
FMS smoother with a short window length for the nominal system where temporary
uncertainty completely disappears or there is no temporary uncertainty.

In this section, the two-stage Bayesian FMS smoother is proposed to cover the nominal
system as well as the temporarily uncertain system by applying two kinds of Bayesian
FMS smoothers selectively. Two kinds of Bayesian FMS smoothers are defined by the
primary Bayesian FMS smoother with long window lengthMp and the secondary Bayesian
FMS smoother with short window length Ms. That is, the window length Mp is larger
than the window length Ms.

Using the simple matrix form (15) for the Bayesian FMS smoother, the primary Bayesian
FMS smoother is denoted by x̂

p
i−d and has the window length Mp as follows:

x̂
p
i−d =

(

ΓT
Mp

Π−1
Mp

ΓMp

)−1

ΓT
Mp

Π−1
Mp

(
ZMp

− ΞMp
UMp

)
, (16)

and the secondary Bayesian FMS smoother is denoted by x̂s
i−d and has the window length

Ms as follows:

x̂s
i−d =

(
ΓT
Ms

Π−1
Ms

ΓMs

)−1
ΓT
Ms

Π−1
Ms

(ZMs
− ΞMs

UMs
) , (17)

where ΓMp
, ΠMp

, ZMp
− ΞMp

UMp
, ΓMs

, ΠMs
and ZMs

− ΞMs
UMs

can be obtained from

(8) and (10). Matrices
(

ΓT
Mp

Π−1
Mp

ΓMp

)−1

ΓT
Mp

Π−1
Mp

in (16) and
(
ΓT
Ms

Π−1
Ms

ΓMs

)−1
ΓT
Ms

Π−1
Ms

in (17) need only one computation on the interval [0,Mp] and [0,Ms], respectively, once.
And then, they are time-invariant for all moving windows. Thus, two FMS Bayesian
smoothers x̂p

i−d (16) and x̂s
i−d (17) are time-invariant.

One of the two Bayesian FMS smoothing estimates is selected as the valid estimate
according to presence or absence of uncertainty. The primary Bayesian FMS smoother
x̂
p
i−d is selected as the valid estimate x̂i−d for the nominal system and the secondary

Bayesian FMS smoother x̂s
i−d is selected as the valid estimate x̂i−d for the temporarily

uncertain system as follows:

x̂i−d =

{

x̂
p
i−d in case of nominal system,

x̂s
i−d in case of temporarily uncertain system.

In order to indicate presence or absence of uncertainty, operate the suitable one from two
smoothers, and then obtain the valid smoothing estimate, a declaration rule is defined.
The declaration rule determines two declaration cases of uncertainty presence and absence.
The uncertainty presence indicates that the uncertainty occurs from the nominal system.
On the other hand, the uncertainty absence indicates that the uncertainty is gone. A test
variable ti required for the uncertainty presence and absence declaration is formulated by
the estimation error of the primary Bayesian FMS smoother x̂p

i−d as follows:
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ti−d =
(
xi−d − x̂

p
i−d

)T
Σ−1

Mp

(
xi−d − x̂

p
i−d

)
. (18)

The matrix Σ−1
Mp

is the covariance of xi−d − x̂
p
i−d and obtained from (12). Since the es-

timation error xi−d − x̂
p
i−d is in Gaussian distribution, the test variable (18) is in the

chi-squared distribution with one degree of freedom. The chi-square, also written as χ2,
test statistic was used for abnormal signal detection [9,10]. As shown in (18), a chi-square
test statistic is developed from the difference between a state and its smoothing estimate
and then compared with a precomputed threshold for uncertainty presence and absence
declaration.
The test variable ti−d increases from the chi-squared distribution in proportion to the

power of the uncertainty if an uncertainty appears. On the other hand, the test variable
ti−d decreases from the chi-squared distribution in proportion to the power of the uncer-
tainty if an uncertainty disappears. Hence, comparing the test variable ti−d to a threshold
value γ can declare the presence or absence of uncertainty.
A threshold value is precomputed to compare with the test variable. The threshold

value is set relatively to the sensitivity of the estimation error xi−d − x̂
p
i−d. That is, a too

low threshold value causes an excessive false alarm rate, on the other hand, a too high
one brings about insensitive uncertainty presence declaration. Hence, a threshold value
can be precomputed from the chi-squared distribution function with the consideration of
rational probability false alarm (PFA) because the test variable (18) forms a chi-squared
distribution. The relationship between the threshold value and the PFA is represented by
the following one degree of freedom chi-squared distribution function:

PFA = 1− Pχ2(γ∗) = 1−
1

2.5066

∫ γ∗

0

ε−1/2e−ε/2dε,

where γ∗ stands for the threshold value.
Thus, when ti−d > γ∗, the secondary Bayesian FMS smoother x̂s

i−d is selected as the
valid estimate x̂i−d, which indicates that the uncertainty occurs. And then, when ti−d <

γ∗, the primary Bayesian FMS smoother x̂p
i−d is selected as the valid estimate x̂i−d, which

indicates that the uncertainty disappears as follows:

x̂i−d =

{

x̂
p
i−d if ti−d ≤ γ∗ (uncertainty absence),

x̂s
i−d if ti−d > γ∗ (uncertainty presence).

(19)

4. Computer Simulations. To verify the applicability of the proposed two-stage Baye-
sian FMS smoother with two kinds of measurement windows and to compare it with the
standard FMS smoother with one measurement window as well as the existing two-stage
FMS filter, extensive computer simulations using the well-known commercial software
Matlab are performed for an electric motor system.
The discrete-time nominal direct current electric motor model without model uncer-

tainty is given as follows [7]:

A =

[
0.8178 −0.0011
0.0563 0.3678

]

, G =

[
0.0006 0

0 0.0057

]

, B =

[
1
1

]

, C =
[
1 0

]
, (20)

where the electric motor is assumed to be operated without any payload. The electric mo-
tor encounters the input voltage to drive the motor as an external source which is treated
as a control input and emulated by the unit step for simulations. Covariances for system
and measurement noises are taken as Q = 0.012I2×2 and R = 0.012, respectively. Two
kinds of measurement window lengths are taken as Mp = 20 and Ms = 10, respectively.
The lagged length is taken as d = 3. Simulations of 20 runs are performed using different
system and measurement noises to make the comparison clearer. Each single simulation
run lasts 600 samples.
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A model uncertainty is considered as a temporary uncertainty. Thus, the actual state-
space model for the electric motor system becomes

Ā = A+∆A, C̄ = C +∆C, (21)

where ∆A and ∆C for the electric motor system are emulated by

∆A =

[
δi 0
0 δi

]

, ∆C =
[
0.1δi 0

]
, δi =

{

0.05 if 200 ≤ i ≤ 350,

0 otherwise.
(22)

Hence, although two FMS smoothers x̂p
i−d (16) and x̂s

i−d (17) are designed for the nomi-
nal state-space model (20) with A and C, they are applied actually for the temporarily
uncertain system (21) with model uncertainties (22).

The threshold value is set to γ = 7.88 corresponding to PFA = 0.0005 in the proposed
two-stage Bayesian FMS smoother. Figure 1 shows the test variable for uncertainty pres-
ence and absence declaration. As mentioned before, the test variable ti−d formulated by
the estimation error of the primary Bayesian FMS smoother x̂p

i−d provides a reference val-
ue for determining the presence or absence of an uncertainty for the electric motor system.
Figure 2 shows estimation errors for the second state indicating rotational speed for two
smoothers, the primary FMS smoother with Mp = 20, the secondary FMS smoother with
Ms = 10, and the existing two-stage FMS filter. According to the declaration rule (19) us-
ing the test variable (18) and the threshold value γ = 7.88 corresponding to PFA = 0.0005,
the proposed two-stage Bayesian FMS smoother with two kinds of measurement windows
provides the state estimate as shown in Figure 2 which show comparisons with three other
estimation approaches. As shown in simulation results, the proposed two-stage Bayesian
FMS smoother with two kinds of measurement windows can be better than the primary
FMS smoother and the existing two-stage Bayesian FMS filter in terms of error magni-
tude and error convergence on the interval where modeling uncertainty exists. In addition,
the proposed two-stage Bayesian FMS smoother can be better than the secondary FMS
smoother when there is no temporary model uncertainty or after temporary model un-
certainty is gone. These observations on computer simulations show that the proposed
two-stage Bayesian FMS smoother can work well in temporarily uncertain systems as well
as in certain systems.
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Figure 1. Test variable for the electric motor system
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Figure 2. Estimation errors

5. Conclusions. This paper has proposed two-stage Bayesian FMS smoother with two
kinds of measurement windows using the chi-square test statistic in order to cover the
nominal system as well as the temporarily uncertain system. The simple matrix form
for the Bayesian FMS smoother has been developed from the conditional density of the
current state given finite past measurements. Then, one of the two smoothers, the pri-
mary Bayesian FMS smoother and the secondary Bayesian FMS smoother, with different
measurement windows has been operated selectively to obtain the valid estimate accord-
ing to the presence or absence of uncertainty. The primary Bayesian FMS smoother has
been selected for the nominal system and the secondary Bayesian FMS smoother has
been selected for the temporarily uncertain system, respectively. A declaration rule has
been defined to indicate the presence or absence of uncertainty, operate the suitable one
from two smoothers, and then obtain the valid smoothing estimate. The test variables
for the declaration rule have been defined using the chi-squared distribution with one
degree of freedom. Finally, extensive computer simulations have been performed for an
electric motor system to verify the proposed two-stage Bayesian FMS smoother with two
kinds of measurement windows and compare with the standard FMS smoother with one
measurement window as well as the existing two-stage FMS filter. Through simulation
results, it has been confirmed that the proposed two-stage Bayesian FMS smoother works
well for both nominal systems and temporarily uncertain systems. It has been also shown
that the proposed two-stage Bayesian FMS smoother can be remarkably better than the
existing two-stage FMS filter for the temporarily uncertain system.
Since the research work for the FMS smoother is relatively inactive in the case where

noises are nonzero-mean Gaussian, an alternative smoother for nonzero-mean noises can
be researched as future work.
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