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Abstract. This paper proposed a new binary social spider algorithm with repair oper-
ator solving discounted {0-1} knapsack problem (DKP01). The solution of DKP01 is
presented by a binary vector. Social spider algorithm is a simple and powerful optimiza-
tion algorithm. A new function is used to convert real vector to binary vector to design
binary social spider algorithm. We conducted extensive experiments on two types of 20
instances using our proposed approach. The experiments proved that the new method is
efficient for solving DKP01.
Keywords: Discounted {0-1} knapsack, SSA algorithm, Optimization algorithm, Arti-
ficial intelligence, Heuristic

1. Introduction. A new binary social spider algorithm is proposed to solve discounted
{0-1} knapsack problem (DKP01). DKP01 formula is as the following:

Maximize f(X) =
n−1∑
i=0

(x3iv3i + x3i+1v3i+1 + x3i+2v3i+2); (1)

Subject to x3i + x3i+1 + x3i+2 ≤ 1, i ∈ {0, . . . , n− 1}, (2)

Subject to (x3iw3i + x3i+1w3i+1 + x3i+2w3i+2) ≤ C, (3)

x3i, x3i+1, x3i+2 ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n− 1}; (4)

where, x3i, x3i+1, and x3i+2 represent whether the items 3i, 3i + 1, and 3i + 2 are put
into the knapsack: xj = 0 indicates the item j (j = 0, 1, . . . , 3m− 1) is not in knapsack,
while xj = 1 indicates the item j is in knapsack; w3i, w3i+1, and w3i+2 are the weight
of items 3i, 3i + 1, and 3i + 2 respectively. It is worth noting that a binary vector
X = (x0, x1, . . . , x3m−1) ∈ {0, 1}3m is a potential solution of DKP01. Only if X meets
both Equations (2) and (3), it is a feasible solution of DKP01.

The DKP01 is a new knapsack problem introduced by Guldan [1]. This problem has
many applications in investment decision-making, mission selection, and budget control.
Dynamic programming for solving DKP01 is first studied in [1]. [2] introduced the D-
KP01 by using the core concept of the {0-1} knapsack problem, and combined dynamic
programming with the core of the DKP01. Two algorithms of FirEGA and SecEGA are
proposed by He et al. for DKP01 [3]. Recently, they [4] also had a detailed study of the
algorithms of the DKP01 and proposed a brand new deterministic algorithm and approx-
imation algorithms. They proposed PSO-GRDKP based on particle swarm optimization
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with encoding discrete [5], multi-strategy monarch butterfly optimization algorithm and
binary moth search algorithm for discounted {0-1} knapsack problem [6, 7].
Social spider algorithm (SSA) is a new algorithm proposed by Yu and Li for global

optimization [8]. SSA inspired the foraging behaviour of the social spider that can be
described as the cooperative movement of the spiders towards the food source position.
SSA has outperformed other state-of-the-art metaheuristics on many benchmark functions
[9, 10, 11, 12, 13].
In this paper, a novel binary social spider algorithm (BSSA) is proposed to solve D-

KP01. The proposed algorithm combined the exploration of SSA and the exploitation of a
repair operator to solve DKP01. The simulation results on five state-of-the-art benchmark
instances data sets demonstrate that the proposed algorithm has superior performance
compared with previous algorithms.
The paper is structured in five parts: Section 1 gives an overview of the problem to be

solved, Section 2 presents social spider algorithm, Section 3 introduces BSSA algorithm
for DKP01, Section 4 introduces the simulation results, and finally the conclusions are
drawn in Section 5.

2. Social Spider Algorithm. SSA [8] may be a metaheuristic propelled by the behavior
of social spiders. In SSA, the solution of an optimization issue could be a recreation by
the position of another spider on the hyper-dimension spider web. The spiders move on
the Internet whereas they share the position data utilizing vibration of its. Depending on
the receiving vibration from other ones, direct the spider forward to the ideal position.
Points of interest of SSA will be portrayed within the taking after subsections.

2.1. Spider. The manufactured spiders are the fundamental working specialists of SSA.
Each insect has a position on the hyper-dimension spider web, and the wellness esteem of
this position is relegated to the spider. Each spider holds memory is putting away its status
as well as optimization parameters, to be specific, its current position, a current wellness
esteem, taking after vibration at past emphasis, dormant degree, past developments,
and measurement cover. All these characters guide the insect to explore for the ideal
arrangement.

2.2. Vibration. Vibration could be an exceptionally vital concept in SSA. It is one of
the most characteristics that recognize SSA from other metaheuristics. In SSA, we utilize
two properties to characterize a vibration, to be specific, the source position and the
source escalated of the vibration.
The source vibration intensity is calculated by Equation (5).

I(i) = log

(
1

f(i)−B
+ 1

)
(5)

where f(i) is the fitness value of spider i, and B is a constant parameter.
Vibration attenuation when transmitting from spider i to spider i′ is calculated as

Equation (6).

I (i, i′) = I(i)× exp

(
D (i, i′)

σ × ra

)
(6)

where ra ∈ (0;∞) is a given factor. This factor controls the attenuation rate of the
vibration intensity over distance. σ is the standard deviation of all spider locations.

2.3. Detail of SSA. SSA manipulates a population of artificial spiders via a series of
optimization steps. Specifically, each iteration of SSA can be divided into the following
steps.
At the beginning of each iteration, the fitness values of the positions possessed of all

spiders in the population are reevaluated. Then, new vibration is generated for each spider
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and propagated to all the other spiders in the population with attenuation. Depending on
the receipt vibrations, the largest attenuated vibration intensity is selected, and compare
it with the previous one. The best so far intensity vibration is updated. Based on the
vibrations, the position of spiders is updated. Each spider holding mask which is a binary
vector with length is the solution dimension of the optimization problem. Each iteration,
the mask is changed and the solutions are changed based on the mask. Following, a
random walk procedure is executed to aim to improve diversity.

3. Proposed Binary Social Spider Algorithm (BSSA) for DKP01.

3.1. Encoding solution. Original SSA is designed for the real value space. For DKP01,
the solution is presented in a binary vector. So SSA is modified to work for discrete binary
space. A binary vector with 3 ∗ n dimensional is used to present a solution. Bit jth is
equal to 1 if item jth is selected, otherwise item jth is not selected.

Algorithm 1: Binary social spider algorithm

Input: Initial parameters
Output: Optimal solution

1 Initialize parameters: pop, vtari for each spider i ∈ pop.
2 While (stop criteria not met)
3 for spider i ∈ pop do
4 Caculate objective function.
5 Generate a vibration of i.

6 for spider i ∈ pop do
7 Compute the power of the vibrations V produced by all spiders.

8 Select the best vibration vbesti from V .

9 if vbesti > vstari then
10 vbesti ← vstari

11 Upadate ci.
12 Create a random number r ∈ [0, 1].
13 if r > vcsc then
14 Update mi.

15 Create vf0i .
16 Excute a random walk proceduce.
17 Caculate binary vector X by Equations (7), and (8).
18 Handle constraint.

3.2. Real to binary convert function. In this algorithm, a sigmoid function is used
to convert real values to binary values, and the position in the real vector is converted to
binary vector by Equation (7).

Xi,j(t+ 1) =

{
0 if rand() ≥ TF (vi,j(t+ 1))

1 if rand() < TF (vi,j(t+ 1))
(7)

where TF (.) is function for converting real vector to binary vector by following equation:

TF (vi,j(t+ 1)) =
1

1 + evi,j(t+1)
(8)
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3.3. Objective function and repair operator.

3.3.1. Objective function. The DKP01 is maximization problem. However, SSA is de-
signed for a minimization problem. To change DKP01 problem to minimization problem
a big constant Θ is added to the fitness function as follows:

Objective = Θ−
m−1∑
i=0

(x3iv3i + x3i+1v3i+1 + x3i+2v3i+2) (9)

3.3.2. Repair operator. The repair operator includes two phases: DROP phase and ADD
phase. When the total weight exceeds the knapsack, the DROP is used. The ADD phase
works to improve the quality of the solution when the knapsack is not full. The details
of this function can be found in [14].
The advanced repair operator when comparing to penalty function is that the repair

function not only repairs the violate solutions, it also helps improve the quality of potential
solutions.

4. Simulation Results. To evaluate the proposed algorithm, we test on 20 DKP01
instances taken from [14]. Instances f1-f10 are 10 IDKP instances, and f11-f20 are 10
SDKP instances taken from [14].
For the BSSA, the parameters are turning by trial and error. The parameters are set

as: ra = 1, vc = 0.7, vm = 0.1, and popsize = 30.
All the algorithms are implemented in Matlab 2018a. The test environment is set up

on a Desktop with Core i5 8250 CPU at 1.6 GHz, 8 G RAM, running on Windows 10 (64
bit).
Figures 1, 2, 3, and 4 show the convergence curves of the best profits of BSSA for

instances f11, f17, f1, and f7. The BSSA shows better diversification and intensification
when it is fast convergence and finds out the better profit value compared with other ones.
Tables 1, and 2 show the experimental results of the instances. We adopt the same

termination criterion, and the function evaluation limit is set to 30∗3∗n (n is the number of

Figure 1. The convergence curve test function f11
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Figure 2. The convergence curve test function f17

Figure 3. The convergence curve test function f1

groups), for all the tests. For all the instances, the BSSA yields superior results compared
with the other ones. The series of experimental results demonstrates the superiority and
effectiveness of BSSA. The experimental results show that BSSA outperforms the other
algorithms in solution quality. The reason for this superior performance of BSSA is that
our proposed algorithm has good search ability and a greedy repair operator.



262 V. N. TRAN AND T. K. TRUONG

Figure 4. The convergence curve test function f7

Table 1. Experiment results of BSSA, and SecGA on f1-f10 (IDKP instances)

Index Instance Algorithm Best Average Worst StdDev
1 f1 SecGA 68663 68000 67369 328.4

BSSA 68001 66622 65617 557.2
2 f2 SecGA 114434 113385 112307 7446.7

BSSA 112520 111110 110030 655.0
3 f3 SecGA 220096 217982 216313 835.8

BSSA 220400 218001 216500 972.3
4 f4 SecGA 263238 260425 258922 933.4

BSSA 263430 261630 260490 870.9
5 f5 SecGA 309573 306878 304881 907.2

BSSA 311980 308916 306990 1345.0
6 f6 SecGA 414090 411367 408788 1099.3

BSSA 418960 417083 415600 694.1
7 f7 SecGA 451528 444316 442133 1280.3

BSSA 453120 449744 447760 1336.4
8 f8 SecGA 490494 481831 478035 2215.7

BSSA 491750 488140 485610 1477.7
9 f9 SecGA 489661 477001 471848 3656.2

BSSA 486230 484368 482730 754.5
10 f10 SecGA 535541 521604 516445 4265.1

BSSA 534250 530765 528570 1354.3

5. Conclusion. This article proposed a binary social spider algorithm with a repair
operator to solve the discounted {0-1} knapsack problem efficiently. The repair operator
helps the algorithm speed up convergence while improving the quality of the best solution.
The proposed algorithm demonstrated good ability in two issues of fast convergence and
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Table 2. Experimental results of BSSA, and SecGA on f11-f20 (SDKP instances)

Index Instance Algorithm Best Average Worst StdDev
1 f11 SecGA 89769 88832 87463 594.91

BSSA 90622 89666 88518 545.30
2 f12 SecGA 153821 152059 150753 489.39

BSSA 150880 149119 148110 601.90
3 f13 SecGA 224997 223580 221918 543.38

BSSA 223610 221278 219890 939.83
4 f14 SecGA 318510 315513 313747 851.14

BSSA 314660 311071 308960 1321.38
5 f15 SecGA 420238 416964 413933 1291.65

BSSA 433490 431725 429840 1109.59
6 f16 SecGA 430738 427304 425504 1031.12

BSSA 425150 422036 418500 1729.48
7 f17 SecGA 561224 556083 552007 1926.26

BSSA 578680 575727 574030 1120.69
8 f18 SecGA 611644 606263 603774 1446.94

BSSA 617570 611351 606300 3056.41
9 f19 SecGA 674885 667900 664580 1614.04

BSSA 672920 669295 665290 1826.39
10 f20 SecGA 708935 695557 691994 2956.08

BSSA 697260 693486 690500 1768.60

high quality of the found solution. The simulation results on the state-of-the-art bench-
mark instances proved that the proposed algorithm has superior performance compared
with previous algorithms. In the future, we will compare with more the state-of-the-art
algorithms.
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