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ABSTRACT. This paper investigates two-dimensional (2-D) discrete systems described
by Fornasini Marchesini Second Local State Space (FMSLSS) model. The system is
considered to be under the influence of delays and saturation overflow nonlinear effects.
The stability criterion is in the form of linear matriz inequalities (LMIs). The Wirtinger-
based inequality and reciprocal covexity approach is used to develop the criterion. Using
numerical example, comparison of the proposed criterion is done with previously reported
criterion to demonstrate the effectiveness of the criterion.

Keywords: Discrete-time systems, Finite wordlength effects, Linear matrix inequality,
Lyapunov stability, Delayed systems

1. Introduction. The stability of two-dimensional (2-D) discrete systems under the com-
bined influence of saturation nonlinearities and delays is an important problem [1, 2, 3, 4].
It is well known that the presence of delays and nonlinearities may lead to instabilities in
the system. Delayed systems have been widely studied [1, 2, 3, 4, 5, 6].

The system described by Fornasini Marchesini Second Local State Space (FMSLSS)
model under the influence of saturation nonlinearities and interval-like time varying delays
was studied in [1]. The 2-D systems with constant delays and saturation nonlinearities
were dealt in [2, 3]. In [4] the system under the influence of saturation nonlinearities,
time varying delays and uncertainties was studied. However, there is further scope for
reducing conservativeness of 2-D discrete systems in the presence of variable delays and
saturation nonlinearities.

In this paper, we establish new stability criterion for two-dimensional discrete systems
involving variable delays and saturation nonlinearities. Substantial contributions of the
paper are: (i) A delay dependent stability criterion for 2-D discrete systems involving
variable delays and saturation overflow nonlinear effects is established; (ii) Comparison is
done with the recently reported works [1, 4]; (iii) An analytical exemplification illustrates
the effectiveness of the developed criterion. The organization of this paper is as follows. In
Section 2, the description of system under consideration is presented. Section 3 establishes
the vital results of the paper. In Section 4, a numerical example is discussed emphasizing
the suitability of the given approach. Finally, Section 5 concludes the paper.
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2. System Description. Throughout this paper, the standard notations used are: R?
represents the p-dimensional Euclidean space; RP*? denotes the set of p x ¢ real matrices;
0 is the null vector or null matrix of proper dimension; I represents unit matrix of
suitable dimension; BT is the transpose of the matrix (or vector) B; B > 0 (> 0)
denotes that B is a positive definite (semidefinite) symmetric matrix; f(-) characterizes
saturation nonlinearities; the symmetric terms in a symmetric matrix is symbolized by
‘*; Z, denotes a set of nonnegative integers; col{-} denotes a column matrix; for any
square matrix, sym{B} stands for {B + BT} and e; (1 = 1,2,...,r) are block entry
matrices, For example, e; =[0 I 0 --- 0].

Consider a category of 2-D discrete systems involving variable delays and saturation
nonlinear effects modeled using Fornasini Marchesini Second Local State Space (FMSLSS)
model, described as follows:

z(pu+1v+1) = Ffyp.v) = Llnwv) Lle(mr) - fawr)]”  (la)
y(p,v) =Aix(p,v+ 1)+ Asxe(p+ 1,v) + Agx(pp — oy, v + 1)
+Agx(p+1,v—70) (1b)

where u € Z, and v € Z, are spatial coordinates; x(u,v) € R" represents the local

state vector; Ay = [a],], Ay = [al}], Ag, = [a]l]], Ag, = [a]}] are the known n X n
constant matrices; c, and 3, are variable delays along horizontal and vertical direction,

respectively. Let o, and 3, satisfy

a<a,<an, B<B, < B (1c)

where ; and f3; are fixed positive integers denoting the lower-limit delay through hor-
izontal and vertical directions, respectively; a; and [, are fixed nonnegative integers
denoting the upper-limit delay through horizontal and vertical directions, respectively.
Suitable values of «y, f;, ap, By are employed in an iterative manner so that (8) hold and
leading to a range of oy, and [, such that the system is stable.

The saturation nonlinear effects are given by

yr(ps ), k(s v)] <1
fk(yk(ﬂ“’ V)) = L yk(ﬂ, V) >1 (2)
-1, yr(p,v) < —1
k=1,2,...,n, are under consideration.

It is assumed [1, 8] that system (1), i.e., (1(a)-1(c)) has a limited array of boundary
requirements, i.e., two non-negative integers K and L prevail such that

w(MaV):O: VMZKa V:_Bha_ﬁh—i_la---?())

m(u7y):pu,u7 VOS#<K7 V:_/Bha_ﬁh_’_l)"'v()a

x(p,v)=0, Yw>L, p=—ap,—a,+1,...,0,
(11, v)

T,V :q/u/v \V/OSV<L, M:—Oéh,_ah+1,--.,0,
Puy=4,,, whenpu=0andv=0 (3)
Define
4n
mzzmwl, w=1,2,....n (4)
v=1

where a,, is the (u, v)th entry of A = [A; Ay A, Ag,] and assume that the elements
of matrix A satisfy

r,>1, p=12....m (5)
r, <1, p=m+1lm+2,...,n (6)

where m is an integer between 0 and n.
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Now, we have the definition that standardizes the concept of asymptotical stability of
2-D discrete systems under consideration.

Definition 2.1. [12] The 2-D discrete system with time-varying delays (1)-(3) is asymp-
totically stable if lim X, = 0, where X, = sup{||x(i,j)|| :i+j =14, € Z}.

T—00

3. Main Results. In this section we present the major findings of the paper.

Theorem 3.1. Given positive integers oy, ap, B, Bn satisfying 0 < o < ap and 0 <

B1 < Bn, the system represented by (1)-(6) is globally asymptotically stable if there exist
positive-definite symmetric matrices

P, P, P, P, P, P,
P=| « P, P; | eR™" P=| x P, P; | ecR™"
* x Py * * 136
Q“, Q,(nv=123)e R R, Ry(u, v =1,2) € R"™" and the matrices
|: ?11 1?12 :| c R2n><2n ?11 ?12 c RQnXZn
Y21 Y22 ’ Y21 Y22
such that
R, 0 Y, Yy R, 0 Yy, Yy
x 3Ry, Yy Y x 3R, Yy Y
2 Yo 22 >0, 2 Yo 22 >0 (7)
* *x Ry, O * * Ry O
* * * 3R, * * * 3R2
and the following Linear Matriz Inequalities (LMIs) hold simultaneously:
E(O./M = qq, By = 6[) <0 (8&)
E(Oé“ = Qy, 61, = Bh) <0 (Sb)
Ela,=an, B =0)<0 (8¢)
E(O./M = Qp, /By = Bh) <0 (8d)
where
15
E(ay, B,) = sym{A} + Z e; By xer, (9)
k=1
(PT - PT> _pr o (134 - PT) _
A =e 5 — 2R, e5+er{ 23 e7+ef 5 + 3R | e
- =T =T —T =T
[ —an) (P5 - PY) (o — a,) (P5 - Py)
+e; 5 e +e 5 €13
i L
[ Po 2 b 2 b T T <P3 -P > A
+ 61 7 - O[l R]_ - OéthQ + C Al 815 _|_ 82 2 - 2R]_ 86
-7 ~ AT
p B(Pi-Py)
+ eg 5 3 es + eg 9 + 3R1 €1
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15 ) )
72 — BiRy — By Ry + CTA2] el
[—2R2 Y -V Y- 1722} €5

1

3Ry + Y2 + Yalen+el [3R2 - }7{2 + Y;} eis +e; [CTAy] e

—ZRQ — }}11 — Y21 - YA'lZ - ?22 €g

[ T AT ~NT AT - - -
2R, - Y + Y, + Y, — Yy e tef [3R2 + Yo+ Y22} €12

Moa ~ T ~T _ _ _ _
3Ry — Y, + YQQ] €iq + 34T [CTAdz} €5 + eg [Y1T1 - Y?Q + Ygl - Y;F2] er
- _ _ — _

a(Ps—Py) P | (=) <P6 - P5> _

— +3R; | e + e 5 +3Ry| en

(00— a,) (P — P7)

_ _ P,- P
5 + Y+ Y| e t+el (3—22)] e1s
b (Ps — Pu)
AT AT AT AT .
[Yn Y +Yy — Y22:| es + eﬁT — 5 +3R, | e
- N T
(B = B) (P P})
9 + 3R2 €19
- A AT . .
(=8 (Ps—P1) . L [(Ps-P2)
9 + Y12 + Y22 €14 + 86 T €15
o P (. — VP .
oz; 5} ey + el { (0, 5 a)Ps _ Yo + Y22] e
- P _ -P —BP
(ah Ofu) 6 + 3R2 €13 + 6? 3 €15 + eg Bl > €10
2 2 2
(B, - B)Ps (B, — B)Ps
%—Ym—kifgg 612+eg (B 25) 5 43R, | ew
P P P _
3 €15 -+ eg -2 €15 -+ e,{O M €15 —+ ell |:_Y,§2i| €13
2 2 2
a, — o) P AT L — B)P
|:(M—2l)3:| 615 + 6{2 |:_Y22:| 614 + 6{2 (/8—2/81)3 615
a, —ay,) P —B)P
[—( i 5 ) 3] e + e, —(ﬂh 25 ) 3] €5 (10)




ICIC EXPRESS LETTERS, VOL.15, NO.3, 2021 277

and

L (PerPl)
Eig=—-P + 5 + Q1 +Qy+ Qs+ anQs+ o Ry + ap Ry — 4R,y (11a)

. (132 + 132) . . . . . . .
Bog=—P; + 5 + Q1+ Qs+ Qs+ BuQs + iRy + By Ry — 4R, (11b)
Es3 = _Qg —8Ry+ Y + erl + Yo + Y1T2 ~Yy — 172Tl — Yy — YQTQ (11c)

A . - AT A AT - AT A ~ T
Eu=-Q; -8R +Yu+Y; + Y +Y ,— Yy —-Y,  —Y-Y,, (11d)
Es55 = —Q —4(R1+R2) (11e)
Eeo=—Q, — 4 (Rl + Rz) (11f)
Err=—Qy— iR, (11g)
Egs=—-Q, — 4R, (11h)
Boy = —3Ry (11i)
E‘lO 10 — —3R1 (11J)
B = Bz = —3R, (11k)
Eiz12 = Bia14 = —3R, (111)
815715 = 131 + O[?Rl + Oz}QLlRQ + Pl + /B?Rl + /BilRQ - (C + CT> (llm)
ap = ap — 0, Pu=PBr— B3 (11n)

also the matriz C = [c,,] € R™" is characterized by

n

Gu= Y (Gw+hw), p=12...m (12a)
v=1,v#pu
g,uy_hul/? /L>l/:1727"'7m (M#I/)
v — — 12b
o g,u,s—hw,7 p=L12....m v=m+1lm+2....n (120)
9w >0, hy >0 p=12....m, v=12....n (p#v) (12c¢)
and the parameters Smi1, Smi2; - - - S i (12b) are defined by
su=>_ el + ol + o/ + | [} + D0 po {lap | + o] + o
v=1 v=m+1
+la |}, p=m+1m+2,....n (12d)
4an
pH:Z|aW\, p=m+1lm-+2...,n (12e)
v=1

where a,,, is the (p, v)th entry of A =[A; Ay Ay Ag,).
Proof: Consider the following 2-D Lyapunov-Krasovskii functional:

V(x(p,v) = V(e v)) + V(e(p,v)) (13)
where

V(@(nv)) = T (uv)PLa(u,v) + S @ (u+1,0)Qa(u +1,v)

r=—oq



S. PANDEY AND S. K. TADEPALLI

fy

r=—a

278

(n+7v)Qyx (i +1,v)

—qq —1

+ Z Z ' (1 +7,v)Qsx

0=—ay r=0

0 _
S Y wlutr )Ryt rv)

O0=—a;+1r=—1+6

(1 +7,v)

—ay

+am Y Z i (p+ 7, v) Romy, (4 7, v)

O0=—ap+1r=—1+6

(14)

-1

— () PT, () + 3 2"

r=—0

~1
+ Z xl (v +1)Qyx
r=—Ph
—B -1 R
+ Z ZwT(u,V—l—T)Q?,m(,u,u—Fr)

b=—B), =0

0 —1
+6 > D mi(my+r)Rim,(nv+7)
:7ﬁl+1 7":71+9
—B -1 )
+Bu Y, Y, My +r)Rom, (v +7)

0=—Bp+1r=—1+0

~

V(@(p,v)) (v +1)Quz (v + 1)

(v +7)

(15)

and

-1

LY (p,v) =

r=—qy
1

" (nv) Y

L r=—p

I‘f(ﬂv V) =

M, v+1)=z(p+1lLv+l)—z(pr+1)=
n(p+1lLv)=z(p+lLv+l) —z(p+lv)=

xl(p,v) Z x’

—Cl(l—l

(wtrv) Y ="

r=—0Qp

—Bi—1

' (mv+r) Y @’

r=—0

(u+rv)

(kv +7)

f(y(p% V)) -

(16a)

(16b)

x(p,v+1) (16¢)
flylp,v)) —x(p+1,v) (16d)

The finite difference of Lyapunov functional along the trajectories of system (1) is given

by
AV(x(p,v))
where
AV (x(p,v) = V(e(p+1,v+1)) -

=& (u,

—a" (=, v+ 1)Q z (1
— " (1 — an, v+ 1)Qum(

= Al‘_/(w<:ua

V(a(p,v+1))
)P, )&, v) + 2T (v + 1) Qv + 1)
— oVt 1) + wT<:U’7 v+ 1)@2:‘6(”7 v+ 1)
—an, v+ 1)+ (v + 1)Quz(p, v +1)

+ahle(,u7 v+ 1)@33}(”7 v+ 1)

—qq

~ Y Wt

r=—ap

V) + DoV (2(u,v))

(n+rv+1)Qsx(p+r,v+1)

(17)



AV (@(p,v))

€ (1,v) = col

QT)(M7V) :e{ _P1+

T
+e;

T
+e;

T
+e;

T
+e;
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"‘a?n;ﬁp(% v+ 1)R177h(/h v+ 1)
-1
—a > mp(ptrv+ DRy (p+r v+ 1)
r=—uoq
+ ai%lﬂif(:“v v+ I)RQTI}L(M’ v+ 1)
—a;—1

—aw > np(p+r v+ ) Romy(n+r,v+1)

r=—ay

~ ~

V(e(p+1,v+1)) = V(xe(p+1,v))

€' (11, 0) P, v)E(p,v) + " (1 + L,v) Qe (i + 1, v)
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(18)

—a"(u+1,v—3)Que(u+1,v— )+ 2" (u+1,v)Qum(u + 1,v)
—a"(u+ 10— B)Quz(n+1,v = B) + " (u+ 1,v)Qsm(u + 1,v)

+6hle(,u +1, V)Q3$<M +1, V)
-8
- Z 2l (p+ 1,0 +7)Qux(u+1,v+7)
r==P
+ 8 (1 + Lv)Rim, (1 + 1,v)
—1
B Y M+ Lyt r) R, (n+1v+7)

r=—p
+5}%lng<ﬂ + 17 V)R2"7U(N + 17 V)
—Bi—1
— Bhi Z i (u+1,v+r)Rom,(u+ 1,0 +7)
r=—Pn
([ =" (wrv+1) [ 2" (u+Lv—5) xT (p, cu,y )
mT(ﬂ+1,V) a}T(,ufOé}«HVJrl) XT(l: ﬁl’ﬁﬂ)
s Pl Pr
T Y I R R O S
) s h
2T (p+1,v—3) xT (1,0, ) s 5# o)
s Mvs Ph
\ L mT(/”L_al7V+1) i XT(/J?Oaﬂl)
(P2 +P7) (Py-P5)]
5 e + sym elT 7 es + elT
[ D >3 =T =T\ 7]
a <P4—P2> - <P5 —P3>
5 €9 +€1 B €11
i —T =T _ -
(ah_aﬂ)<P5_P3 T Ozl<P5—P4)
9 e3 + e; 5 €9
_ B _r _ 7
(0, — o) (Ps — P5) [t —a) (Ps - PY)
€1 +65
2 2
_o P (o, — )P
&2l 5:| €9 + 6? |: <Oé# 2al) 6:| €11

(19)

(20)
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—(ap — a,) Pg
+€?|: 5 ® €13 (21)
~ ~T ~T ~ T
o, () @-P)] R
d(p,v) = € P, + 5 € + sym q €, 5 € + € 5 | €8
- N ~T ~T ~T E
[5(Pi-P)) [0 (B5 - PY)
+62 5 810+€2 B €12
- AT AT . o\ -
[ 6= 5 (P5 - ;) L [6(Ps - P)
+e; 5 €14 + € — 5 €10
- . AT LT
(B, — B1) | Ps — P (Br — By) | Ps — Py
T T
—f—BG 5 612+€6 9 €14
[P L, — B P
+68T Bl 5 6’10+€g (ﬁ ﬁl) 6 €1
2 2
[ —(Bn— B,)Ps
—|—eg 5 €14 (22)

and the terms x7(+) in (20) are obtained from Wirtinger inequality defined in [9].
Note that
—ay
— Z ' (u+r v+ 1)Qsz(p+rv+1) < —x"(u—a,,v+1)Qsx(n— a,v+1) (23)
r=—ay
and
—Bi ) )
— Z 2 (p+1Lv+rQsz(p+1Lv+r) < —z'(u+1,v—6,)Qsx(u+1,v—3,) (24)
r=—Ph
Next, by employing Discrete Wirtiger-based inequality [9], we obtain the following
expressions

—1
—ar Y mi(pArv+ DRy (p+rv+ 1)
r=—auq

T
z(p,v+1) —x(p—a,v+1) Ry 0 z(p,v+1) —x(p—a,v+1) (25)
0 3R

< —

B [ (v +1) +x(p— o, v+ 1) —x(p,0, ) x(p, v+ 1) +x(p— o, v +1) —x(1,0,ap)

and
1

B Y mi(p+ Ly +r)Rin,(u+ Lv+r)
r=—p

< _[ w(p+1,v) = @(u+1,v - F) ]T {Rl o } [ @(u+1,0) — 2(u+1v—B) ] (26)
@+ 1,v) +a(ut Ly — ) — x(,0,5) 0 3R | | @(p+Ly)+a(utlv—F)-x(008)

Now, let us define

m=xp—o,v+1)—x(p—o,v+1) (27a)
’72:33<M—Oél,y+1)+l'(,u—04'u,l/+1)—X(/L,Oél,a#> (27b)
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Ys=x(p— oy v+1)—x(p—oapv+1) (27¢)

Y=x(p—ouv+1)+x(p—op,v+1) —x(wa,, o) (27d)
=xz(p+1lLv—0)—xp+1,v—20) (27e)
Yoe=x(p+1l,v—F)+xp+1lv-5)— x5 05) (27f)
Ys=x(p+1lv—F)—x(p+1,v—05) (27g)
=x(p+lLv—0)+x(p+1,v—06)—x(v, B, 6 (27h)

Let the quantity ‘0’ be expressed as

m

Z Y1, v) = fulyn(p, v))] [Ckkfk(yk(u, )+ D> eufilulpv))

=1 =1,k

yl m, v
+ Z CrplS;——————————

I=m+1,k#l

+ Z cr fi(y(p, v))

I=1,k#l
=y (. v)Cfy(p,v) + (Y, v)C fly(p,v))
— Ty, v) (C+CT) fy(u,v)) (28)

By applying reciprocal convexity method [10, 11] and using (28), the following relation is
established

+ Z e (1, v) = Sy (s )] | cunfr(yr(p, 1))

k=m+1

AV (z(p,v)) < & (1, v)E(y, B,)E(p,v) = 6 (29)
where
([ «"(wv+1) | [a"@w+Lv=06) 7 [ x"(ma,au) 1)
xl(pn+1,v) ' (u—ap,v+1) x* (v, B, Bv)
£T(,u, v) = col 2l(p—au,v+1) |, | 8 (w+1Lv=061) |, | xF(wau, o) (30)
2T (u+ 1,0 — B) x” (1,0, 1) x" (v, By, Bn)
(L2 (p—anv+1) | [ xXTw0,8) | L FFywr) 1)

The quantity ‘0’ (see (28)) is non-negative in view of (2), (3)-(6) [3, 8]. Observe that,
if E(ay, ) < 0, then AV (x(p,v)) < 0 for £(u,v) # 0. Furthermore, AV (x(u,v)) =0
only when &(u,v) = 0. Now, employing Definition 2.1 and following [8], it may be
simply demonstrated that x(u,v) — 0 as p — oo and/or ¥ — oo for any boundary
constraints fulfilling Equation (3) if AV (x(y,v)) < 0. Thus, the condition E(ay,, 3,) < 0
along with (7) is asymptotically stable sufficient condition for the system described by
(1)-(6). According to the property of affine matrix functions the condition E(«,,, 5,) < 0
if and only if the conditions given in (8) hold true. This concludes the proof of Theorem
3.1. 0

4. Numerical Example. In this section a numerical example shows the significance of
the presented results.

Example 4.1. Consider the 2-D discrete system described by (1)-(3) with

1.2 =55 0.01 O 0 0.01
A= { 0.1 0 ] A= [ 0 0.0l }  Aa = A = [ 0.0L 0 } (31)
which includes saturation nonlinearities. Clearly for this example py = 6.73 > 1 and

py = 0.13 < 1. To determine the feasibility of Theorem 3.1, select the matriz C of the
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form

g12 — hi2
By, 22212
C— g12 + hio 5 (32)

C21 C22

where g12 > 0, hio > 0. Now, our objective is to determine whether the system under
consideration satisfies global asymptotic stability condition or not. On solving the LMIs
employing MATLAB environment along with YALMIP 3.0 parser [13] and SeDuMi 1.21
solver [14], it is found that Theorem 3.1 provides feasible results over the delay ranges
2<a,<9and2< 3, <T.

It is worth comparing Theorem 3.1 with [1, 4]. Corollary 1 in [4] was able to determine
the stability of the above system for the delay range 2 < oy, < 5 and 2 < 3, < 7. On
comparison it can be observed that the proposed Theorem 3.1 is able to determine the
stability over a larger upper delay bound, i.e., ay, = 9 while for [4] oy, = 5. It was also
observed that Theorem 1 of [1] fails to determine the asymptotic stability of the present
system. Therefore, Theorem 3.1 provides better stability results as compared to Corollary 1
of [4] and Theorem 1 of [1] for the present 2-D system under consideration. The proposed
Theorem 3.1, therefore, provides better results as compared to [1, 4].

5. Conclusion. This paper establishes LMI based stability criterion by employing Wir-
tinger-based integral inequality and reciprocal convexity method. Theorem 3.1 deals with
a category of 2-D discrete systems modeled by the FMSLSS model comprising variable
delays and saturation nonlinear effects. The effectiveness of the presented results has
been demonstrated by an example. The proposed stability results in this paper can be
extended for the study of uncertain systems, sensor networks and fuzzy systems.
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