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Abstract. This paper investigates the problem of fuzzy adaptive tracking control for
a class of uncertain nonlinear strict-feedback systems with actuator fault. The actuator
fault is assumed to have not only time-varying gain fault but also time-varying bias fault.
Combining command filtered backstepping design with the integral-type Lyapunov func-
tion and utilizing Nussbaum-type gain technique, an adaptive fuzzy fault-tolerant control
scheme is proposed to guarantee that the resulting closed-loop system is asymptotically
bounded with the tracking error converging to a neighborhood of the origin. The con-
trol scheme requires only virtual control and its first one derivative instead of the higher
derivatives in backstepping design procedures. Simulation results demonstrate the effec-
tiveness of the proposed techniques.
Keywords: Fuzzy adaptive control, Command filtered backstepping, Fault-tolerant con-
trol

1. Introduction. Fuzzy control has found extensive applications for modeling nonlinear
systems in the past ten years. According to the fuzzy approximation theorem of the fuzzy
logic systems (FLSs) [1], researchers proposed many approximation-based adaptive fuzzy
control design methods for nonlinear systems (see, e.g., [2], and the references therein).

It has been proved that adaptive backstepping technique is a powerful tool to propose
an adaptive fuzzy output-feedback control for a class of pure-feedback uncertain nonlinear
systems [3]. For such systems, many adaptive fuzzy backstepping controllers have been
developed (see, e.g., [4] and the references therein), where an observer-based adaptive
fuzzy control method is developed to solve the problem of stochastic nonlinear system
with unknown-delay. It is well known that, however, in standard backstepping design
procedure, analytic computation of the first derivatives of virtual control signals αi (i =
1, 2, . . . , n− 1), i.e., α̇i, is necessary. Note that, the computation of α̇i requires the higher
derivatives of α̇j, j = 0, 1, . . . , i−1. Obviously, as system dimension, i.e., n, increases, the
computation of α̇i becomes increasingly complicated. This limits the theoretical results’
field of practical applications. Hence, how to reduce the computation of α̇i is a crucial
issue in controller design, which is a motivation of this paper.

On the other hand, actuators, sensors or other system components in practical engi-
neering fail frequently, which can cause system performance deterioration and lead to
instability that can further produce catastrophic accidents. Thus, many effective fault
tolerant control (FTC) approaches have been proposed to improve system reliability and
to guarantee system stability in all situations [2,5]. An integrated fault estimation (FE)
and fault-tolerant control design for a rigid spacecraft attitude system with inertia un-
certainties, external disturbances, input saturation, and different type multiple actuator
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faults was proposed in [5]. However, most of the results concerning actuator faults re-
ported in the literature only considered bias faults. Gain faults did not attract enough
attention, which motivates this work, again.
In this paper, a bank of command filters (see, e.g., [6] and the references therein) are

proposed to respectively generate the first derivations of the desired trajectory and virtual
control signals. Then, by using backstepping technique, a robust adaptive fuzzy controller
is proposed to guarantee that the tracking error converges to a neighborhood of the origin,
where FLSs are utilized to approximate the unknown functions. The contributions of our
work are generalized in the following aspects:
1) In contrast with the existing results such as [7,8] where the desired trajectory and

its first n derivatives, i.e., y
(i)
d (t), i = 0, 1, . . . , n should be available, the desired trajectory

and only its first derivative are necessary for the control scheme presented in this paper,
which is more reasonable in practical applications. The theoretic results of this paper are
thus valuable in a wide field of practical applications;
2) Compared with the existing literature concerning the standard backstepping design,

the control scheme presented in this paper does not need to compute the higher deriva-
tives of virtual control signals in backstepping design procedures, which decreases the
computation complexity;
3) Different from [9,10] where all system functions are known, the system functions

considered in this paper are unknown. In particular, the signs of control gain functions
are also unknown.
4) The actuator fault model that is presented in this paper integrates not only unknown

gain faults, but also unknown bias faults, where both faults are dependent on the system
state and will be approximated by FLSs.

2. Problem Statement and Preliminaries.

2.1. Problem statement. Consider the following uncertain nonlinear systems:
ẋi = fi (x̄i) + gi (x̄i) xi+1 + di (x̄i+1, t) , i = 1, 2, . . . , n− 1;

ẋn = fn (x̄n) + gn (x̄n)u(t) + dn (x̄n, t) ;

y = x1

(1)

where x̄i = (x1, . . . , xi)
T ∈ Ri, i = 1, . . . , n is the state; y denotes the output; u ∈ R is the

input; fi(·) ∈ R and gi(·) ∈ R, i = 1, . . . , n are the unknown smooth functions; di(·, t),
i = 1, . . . , n, denote the unknown dynamic disturbances.
In practical applications, actuators may fail. The fault model considered in this paper

can be described as follows:

uf = gf (x̄n)u+ bf (x̄n) , t > tF (2)

where gf (x̄n) and bf (x̄n) are smooth functions, which denote unknown gain fault and
bias fault, respectively; tF is an unknown fault occurrence time.
Control objective is to design an adaptive fuzzy controller by backstepping with com-

mand filter for system (1) such that output y can track accurately the desired trajectory
yd as possible regardless of actuator fault and unknown dynamic disturbances.
To design appropriate controller, the following lemma and some assumptions are given.

Lemma 2.1. For ∀x ∈ R, |x| − tanh(x/δ)x ≤ 0.2785δ, where δ > 0 ∈ R.

Assumption 2.1. There exist known constants gi0 > 0 ∈ R and gi1 > 0 ∈ R such that
gi1 ≥ |gi (x̄i)| ≥ gi0 > 0, ∀x̄i ∈ Ri, i = 1, 2, . . . , n.

Assumption 2.2. There exist unknown constant p∗i and known smooth positive function
ϕi (x̄i) such that |di(·, t)| ≤ p∗iϕi (x̄i).
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Assumption 2.3. The desired trajectory yd(t) and its first derivative are bounded and
available.

Assumption 2.4. gf (x̄n) is bounded, i.e., there exist known constants gf0 > 0 ∈ R and
g1 > 0 ∈ R such that gf1 ≥ |g (x̄n)| ≥ gf0.

2.2. Nussbaum type gain. Any continuous function N(s): R → R is a function of
Nussbaum type if it has the following properties:

1) lims→+∞ sup 1
s

∫ s

0
N(ς)dς = +∞;

2) lims→−∞ inf 1
s

∫ s

0
N(ς)dς = −∞.

For example, the continuous functions ς2 cos(ς), ς2 sin(ς), and eς
2
cos((π/2)ς) verify the

above properties and are thus Nussbaum-type functions. The even Nussbaum function
eς

2
cos((π/2)ς) is used throughout this paper.

Lemma 2.2. [11] Let V (·) and ς(·) be smooth functions defined on [0, tf ) with V (t) ≥
0, ∀t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. If the following
inequality holds:

V (t) ≤ c0 +

∫ t

0

(
gN(ς) + 1

)
ς̇dτ , ∀t ∈ [0, tf )

where g ̸= 0 is a constant, and c0 represents a suitable constant, then V (t), ς(t) and∫ t

0
gN(ς)ς̇dτ must be bounded on [0, tf ).

Lemma 2.3. [12] Let V (·) and ς(·) be smooth functions defined on [0, tf ) with V (t) ≥ 0,
∀t ∈ [0, tf ), and N(·) be an even smooth Nussbaum-type function. For ∀t ∈ [0, tf ), if the
following inequality holds,

V (t) ≤ c0 + e−c1t

∫ t

0

g(τ)N(ς)ς̇ec1τdτ + e−c1t

∫ t

0

ς̇ec1τdτ

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the unknown

closed intervals I :=
[
l−1, l+1

]
with 0 /∈ I, and c0 represents some suitable constant, then

V (t), ς(t) and
∫ t

0
g(τ)N(ς)ς̇dτ must be bounded on [0, tf ).

2.3. Mathematical description of fuzzy logic systems. A fuzzy logic system consists
of four parts: the knowledge base, the fuzzifier, the fuzzy inference engine working on fuzzy
rules, and the defuzzifier. The knowledge base for FLS comprises a collection of fuzzy
if-then rules of the following form:

Rl : if x1 is Al
1 and x2 is Al

2 · · · and xn is Al
n,

then y is Bl, l = 1, 2, . . . ,M

where x = [x1, . . . , xn]
T ⊂ Rn and y are the FLS input and output, respectively. Fuzzy

sets Al
i and Bl are associated with the fuzzy functions µAl

i
(xi) = exp

(
−
(

xi−ali
bli

)2)
and

µBl

(
yl
)
= 1, respectively. M is the rules number. Through singleton function, center

average defuzzification and product inference, the FLS can be expressed as:

y(x) =
M∑
l=1

ȳl

(
n∏

i=1

µAl
i
(xi)

)/
M∑
l=1

(
n∏

i=1

µAl
i
(xi)

)
where ȳl = maxy∈RµBl . Define the fuzzy basis functions as:

ξl(x) =
n∏

i=1

µAl
i
(xi)

M∑
l=1

(
n∏

i=1

/
µAl

i
(xi)

)
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and define θT =
[
ȳ1, ȳ2, . . . , ȳM

]
= [θ1, θ2, . . . , θM ] and ξ(x) = [ξ1(x), . . . , ξM(x)]T , and

then the above FLS can be rewritten as:

y(x) = θT ξ(x)

Lemma 2.4. Let f(x) be a continuous function defined on a compact set Ω. Then for
any constant ε > 0, there exists an FLS such as

sup
x∈Ω

∣∣f(x)− θT ξ(x)
∣∣ ≤ ε

By Lemma 2.4, we know, FLS can approximate any smooth function on a compact
space. Due to this approximation capability, we can assume that the nonlinear function
f(x) can be approximated as

f(x, θ) = θT ξ(x)

Define the optimal parameter vector θ∗ as

θ∗ = argmin
θ∈Ω

[
sup
x∈U

|f(x)− f (x, θ∗)|
]

where Ω and U are compact regions for θ and x, respectively. Also the FLS minimum
approximation error is defined as:

ε = f(x)− θ∗T ξ(x)

Assumption 2.5. There exists an unknown real bounded constant ε∗ > 0 such that
|ε| ≤ ε∗ on compact sets Ω and U .

In this paper, we use the above FLS to approximate the unknown function hi(zi),
(i = 1, . . . , n) which will be defined later, namely, there exist θ∗i and εi such that

hi(zi) = θ∗Ti ξi(zi) + εi

3. Design of Adaptive Fuzzy Controller and Stability Analysis. Define

zi = xi − αi−1, i = 1, 2, . . . , n (3)

where α0 = yd, αi−1 (i = 2, . . . , n) is virtual control which will be designed at each step,
αn = u is actual control input. The recursive design procedure contains n steps. From
Step 1 to Step n − 1, αi (i = 1, . . . , n − 1) is designed at each step. Finally an overall
control law u(αn) is constructed at Step n.
In order to estimate the virtual control αi−1, i = 2, . . . , n, define the following command

filter
ω̇i = −ηω(ωi − αi−1), i = 2, . . . , n (4)

where ηω > 0 is a design parameter. Let us define the estimation error signal vi as

vi = ωi − αi−1, i = 2, . . . , n

Remark 3.1. The command filter (4) is constructed to avoid the computation of the
higher derivatives of αi−1, i = 2, . . . , n. It should be pointed out that the error vi will be
compensated at Step n in this paper.

Step 1: Define the following function

Vz1 =

∫ z1

0

σ

|g1(σ + yd)|
dσ (5)

Virtual control α1 is defined as follows:

α1 = N(ς1)

[
k1z1 + h1

(
z1, θ̂1

)
+ b̂1φ̄1(x1) tanh

(
z1φ̄1 (x̄1)

η1

)]
(6)

ς̇1 = k1z
2
1 + h1

(
z1, θ̂1

)
z1 + b̂1φ̄1(x1)z1 tanh

(
z1φ̄1 (x̄1)

η1

)
(7)
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where k1 > 1 is a design parameter; h1

(
z1, θ̂1

)
= θ̂T1 ξ1 (z̄1) and θ̂1 are estimates of

θ∗T1 ξ1 (z̄1) and θ∗1, respectively; b̂1 is an estimate of b∗1 = max
{
ε∗1,

p∗1
g10

}
, φ̄1 (x̄1) = 1 +

φ1 (x̄1).
Consider the following function

V1(t) = Vz1 +
1

2

[
θ̃T1 Γ

−1
1 θ̃1

]
+

1

2λ1

b̃21 (8)

Adaptive laws are defined as follows:

˙̂
θ1 = Γ1

[
z1ξ1 (z̄1)− σ1θ̂1

]
(9)

˙̂
b1 = λ1

[
z1φ̄1 (x̄1) tanh

(
z1φ̄1 (x̄1)

η1

)
− σb1 b̂1

]
(10)

where Γ1 is a positive matrix with appropriate dimensions, σ1 > 0, σb1 > 0, η1 > 0 and
λ1 > 0 are design parameters.

Differentiating V1 with respect to time t and considering (7)-(10), we have

V̇1 ≤ −(k1−1)z21+
1

4
z22+

g1 (x̄1)

|g1(x1)|
z1N(ς1)ς̇1+ ς̇1+0.2785η1b

∗
1−σ1θ̃

T
1 θ̂1−σb1 b̃1b̂1+∆1 (11)

where Lemma 2.1 is used, namely, 0 ≤ |x| − x tanh
(
x
ε

)
≤ 0.2785ε, ∀ε > 0, ∀x ∈ R.

Since

σ1θ̃
T
1 θ̂1 ≤ −

σ1

∥∥∥θ̃1∥∥∥2
2

+
σ1∥θ∗1∥

2

2
, σb1 b̃1b̂1 ≤ −σb1 b̃

2
1

2
+

σb1b
∗
1
2

2
(12)

then (11) can be derived as

V̇1 ≤ −c1V1 +
1

4
z22 +

g1(x̄1)

|g1(x1)|
z1N(ς1)ς̇1 + ς̇ + cε1 +∆1 (13)

where

cε1 = 0.2785η1b
∗
1 +

σ1∥θ∗1∥
2

2
+

σb1b
∗
1
2

2

c1 = min

{
2(k1 − 1)g10,

σ1

λmin

(
Γ−1
1

) , σb1

λ1

}
Notice that, the boundedness of z2 will be considered in the next step, and the error

e−c1t
∫ t

0
ec1t∆1dτ will be compensated in Step n.

Step n: Define the following Lyapunov function

Vzn =

∫ zn

0

σ

|ḡn (x̄n−1, σ + αn−1)|
dσ (14)

From the analysis in the previous step, Vzn is a positive definite function of zn.
Similar to the previous steps, differentiating Vzn with respect to time t, one has

V̇zn ≤ zn
|ḡn (x̄n)|

(ḡn (x̄n)u+ dn (x̄n, t)) + h′
n (z̄n) zn +∆n (15)

where

h′
n (z̄n) =

f̄n (x̄n)

|ḡn (x̄n)|
+

1

zn

∫ zn

0

σ

[
∂ |ḡ−1

n (x̄n, σ + ωn)|
∂x̄n

˙̄xndσ

]
+

ω̇n

zn

∫ zn

0

1

|ḡ−1
n (x̄n, σ + ωn)|

dσ (16)

∆n =

∫ zn

0

σ

[
∂ |ḡ−1

n (x̄n, σ + αn−1)|
∂x̄n

˙̄xndσ

]
+ α̇n−1

∫ zi

0

1

|ḡ−1
n (x̄n−1, σ + αn−1)|

dσ
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− 1

zn

∫ zi

0

σ

[
∂ |ḡ−1

n (x̄n, σ + ωn)|
∂x̄n

˙̄xndσ

]
− ω̇n

zn

∫ zn

0

1

|ḡ−1
n (x̄n, σ + ωn)|

dσ (17)

Let

h
(
Z̄n

)
= h′ (Z̄n

)
+

n−1∑
j=1

∆j

where Z̄n =
(
x̄T
n , z̄

T
n , ᾱ

T
n , ˙̄α

T
n , ω̄

T
n , ˙̄ω

T
n

)T
.

The actual control is defined as follows:

u = N(ςn)

[
knzn + hn

(
Z̄n, θ̂n

)
+ b̂nφ̄ (x̄n) tanh

(
znφ̄ (x̄n)

ηn

)]
(18)

ς̇n = knz
2
n + hn

(
Z̄n, θ̂n

)
zn + b̂nφ̄ (x̄n) zn tanh

(
znφ̄ (x̄n)

ηn

)
(19)

where kn > 1
4
is a design parameter; hn

(
Z̄n, θ̂n

)
= θ̂Tn ξn

(
Z̄n

)
is an estimate of θ∗Tn ξn

(
Z̄n

)
;

b̂n is an estimate of b∗n = max
{
ε∗n,

p∗n
g10

}
; φ̄n (x̄n) = 1 + φn (x̄n).

Define the following Lyapunov function

Vn(t) = Vn−1 + Vzn +
1

2

[
θ̃TnΓ

−1
n θ̃n

]
+

1

2λn

b̃2n (20)

The following adaptive laws are defined as:

˙̂
θn = Γn

[
znξn

(
Z̄n

)
− σnθ̂n

]
(21)

˙̂
bn = λn

[
znφ̄n (x̄n) tanh

(
znφ̄n (x̄n)

ηn

)
− σbn b̂n

]
(22)

where Γn is a positive definite matrix, ηn > 0, σn > 0, σbn > 0 and λn > 0 are design
parameters.
Differentiating Vn with respect to time t and considering (21), (22) and Lemma 2.1,

similar to the previous steps, one has

V̇n ≤ V̇n−1 − knz
2
n +

ḡn (x̄n)

|ḡn (x̄n)|
N(ςn)ς̇n + ς̇n + 0.2785ηnb

∗
n − σnθ̃

T
n θ̂n − σbn b̃nb̂n (23)

Let cεn = 0.2785ηnb
∗
n +

σn∥θ∗n∥
2

2
+

σbnb
∗
n
2

2
, and then (23) can be derived as

V̇n ≤ V̇n−1 − 2kn |ḡn (x̄n)|Vn +
ḡn (x̄n)

|ḡn (x̄n)|
mv(t)N(ςn)ς̇n + ς̇n + cεn

−
σn

∥∥∥θ̃n∥∥∥2
2

−
σbn

∥∥∥b̃n∥∥∥2
2

(24)

Let

cn = min

{
2knḡn0,

σn

λmin(Γ−1
n )

,
σbn

λn

}
From the analysis in the previous steps, then (24) can be further developed as follows:

V̇n ≤
n∑

i=1

[
ḡi (x̄i)

|ḡi (x̄i)|
N(ςi)ς̇i + ς̇i + cεi

]
(25)

Further, we have

d

dt

(
Vn(t)e

cnt
)
≤ ecnt

n∑
i=1

[
ḡi (x̄i)

|ḡi (x̄i)|
N(ςi)ς̇i + ς̇i + cεi

]
(26)

where ḡi(·) = gi(·), i = 1, . . . , n− 1.
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Let ρn =
∑n

j=1 cεj

cn
. Similar to the previous steps, integrating both the sides of the above

inequality, we have

Vn(t) ≤ ρn + [Vn(0)− ρn] e
−cnt + e−cnt

∫ t

0

[
ecnt

n∑
i=1

(
ḡi (x̄i)

|ḡi (x̄i)|
N(ςi) + 1

)
ς̇i

]
dτ

≤ ρn + Vn(0) + e−cnt

∫ t

0

[
ecnt

n∑
i=1

(
ḡi (x̄i)

|ḡi (x̄i)|
N(ςi) + 1

)
ς̇i

]
dτ (27)

From Lemmas 2.2 and 2.3, it is easily seen that Vn(t), ςn, θ̂n, b̂n are bounded in [0, tf ).
From [13], the same results can be obtained in [0,+∞). Thus, it can be obtained that zn
is bounded in [0,+∞), which means that zn−1 in (n − 1)th step is bounded. Doing the
same reasoning, we finally obtained that all zi(t), i = 1, 2, . . . , n are bounded.

From the definitions of Vzi and Vi, i = 1, . . . , n, which are defined by (5), (8), (14) and
(20), we know

Vn(t) =
n∑

i=1

[
Vzi +

1

2

(
θ̃Ti Γ

−1
i θ̃i +

1

2λi

b̃2i

)]
(28)

From the previous analysis, we have

z2i
2gi1

≤ Vzi =

∫ zi

0

σ

|gi (x̄i−1, σ + αi−1)|
dσ ≤ z2i

2gi0
(29)

Hence, from (27), (28) and (29), we have

|z̄i| ≤
√
µ, ∥θi∥2 ≤

µ

λmin

(
Γ−1
i

) , b2i ≤ λiµ
2, i = 1, 2, . . . , n, ∀t ≥ 0

where µ = 2ḡmax(ρn + Vn(0) + Nn), g̃max = max
1≤i≤n

ḡi1 > 0, ḡi1 = gi1, i = 1, . . . , n − 1,

ḡn1 = gn1gf1,

Nn = lim
t→+∞

n∑
i=1

[
e−cnt

∫ t

0

(
ḡi (x̄i)

|ḡi (x̄i)|
N(ςi) + 1

)
ecntς̇ndτ

]
(30)

The above design procedures and analysis are summarized in the following theorem.

Theorem 3.1. Consider system (1) and fault (2). If Assumptions 2.1-2.5 hold, command
filter (4), actual control defined by (18) and (19), and the adaptation laws (9), (10), (21)
and (22) are employed, and then the closed-loop system is asymptotically bounded with the
tracking error converging to a neighborhood of the origin.

Proof: From the aforementioned analysis, it is easy to obtain the conclusion. The
detailed proof is omitted here.

4. Illustrative Example. In this example, a class of nonlinear systems are described as
follows: 

ẋ1 = x1 +
(
1 + 0.5 sin

(
x2
1

))
x2 + 0.2x1 sin(x2t)

ẋ2 = x1x2 + (3− cos(x1x2))u+ 0.1 cos(0.5x2t)

y = x1

(31)

From (31), it is easily seen that g10 = 0.5, g11 = 1.5, g20 = 2, g21 = 4, p∗1 = 0.2, φ1 = x1,
p∗2 = 0.1 and φ2 = 1, which means that Assumptions 2.1 and 2.2 hold. In this work, the
desired trajectory yd = 0.1 sin(t). Obviously, Assumption 2.3 holds. The actuator fault
considered in this simulation research is described as follows:

uf = (1− 0.5 sin(x2))u+ cos(x1x2)

Obviously, gf0 = 0.5 and gf1 = 1.5, which means that Assumption 2.4 holds.
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For this work, the following parameters are given: k1 = k2 = 3, Γ1 = Γ2 = diag(1, 1, 1,
1, 1, 1, 1, 1, 1, 1), λ1 = λ2 = 1, η1 = η2 = 0.01, σb1 = σb2 = 0.1, θi ∈ R10, i = 1, 2 are

taken randomly in interval (0, 1]. Initial state x(0) is set as (0.2, 0.1)T . The sample time
is 0.08s. From Figure 1, we can find that system (1) has good tracking performance.

0 2 4 6 8 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t/s

 

 
y
y

d

Figure 1. The time profiles of system output y and desired signal yd

5. Conclusions. In this paper, an adaptive fuzzy tracking fault-tolerant control prob-
lem of a class of uncertain strict-feedback nonlinear systems with actuator fault has been
investigated. FLSs are used to approximate the unknown nonlinear functions. By ap-
plying adaptive command filtered backstepping recursive design, integral-type Lyapunov
function method and Nussbaum-type gain technique, an adaptive fuzzy control scheme
is proposed to guarantee that the closed-loop system is asymptotically bounded with the
tracking error converging to a neighborhood of the origin. In this paper, a certain rela-
tion should be satisfied among di (x̄i+1, t) and yd(t) is available. However, without these
restriction, how to achieve the practical tracking goal will be the future work.
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