
ICIC Express Letters ICIC International c⃝2021 ISSN 1881-803X
Volume 15, Number 5, May 2021 pp. 449–456

LOG-NORMAL SMALL AREA ESTIMATION WITH MEASUREMENT
ERROR – AN APPLICATION FOR ESTIMATING HOUSEHOLD

CONSUMPTION EXPENDITURE

Erwin Tanur1,2, Anang Kurnia2, Khairil Anwar Notodiputro2

and Agus Mohamad Soleh2

1Education and Training Centre
Statistics Indonesia

Jalan Raya Jagakarsa 70, Lenteng Agung, Jakarta 12620, Indonesia
wintanoer@bps.go.id

2Department of Statistics
IPB University

Jalan Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia
{ anangk; khairil; agusms }@apps.ipb.ac.id

Received September 2020; accepted December 2020

Abstract. We propose an alternative method for estimating average per capita con-
sumption in a small area with information from repeated surveys. This method is a
modified method of the empirical Bayes estimation of a small area mean in a nested lin-
ear regression model with measurement errors on the covariates. The problem is how to
deal with the use of additional variables with measurement error to estimate the provin-
cial average per capita consumption. Estimator values for the district/city level were
obtained after estimating information at the unit level that was not the sample unit in
the survey. This case is found in the National Socioeconomic Survey. At the application
stage with the survey data, the estimation with measurement error on the auxiliary vari-
ables can give better results.
Keywords: Subsample survey, Small area estimation, Restricted maximum likelihood,
Structural measurement error, Mean square error bootstrap

1. Introduction. Any survey design generally faces a challenge either to make conclu-
sions at the desired level of precision at minimal cost or to maximize precision at a fixed
cost. This challenge continues to increase as the reduction in response rates in the most
recent annual survey increases the risk of bias. If the answers in the survey differ from
the actual values, a measurement error occurs. One survey that is routinely conducted
in Indonesia is the National Socioeconomic Survey (Susenas). In its implementation, the
survey collected data regarding the socioeconomic conditions of the community. There
is some important information in the implementation of the 2015 Susenas namely: 1)
data collection was performed in March and September; 2) data collection in March was
carried out with a large number of samples to produce representative data for the dis-
trict/city level; 3) the data collection in September was conducted with a small sample
size and produced representative data only for the provincial and national levels [1]. A
few available sample information in September made it impossible to estimate per capita
expenditure/consumption at the district/city level or in smaller areas.

In a research study, researchers often deal with asymmetrical populations, which tend to
be rightward dominant, usually occurring in business surveys and agricultural companies,
as well as surveys on personal income and wealth. According to Karlberg, if using the
direct method, the total population of survey variables with a small number of samples
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would be a problem for two reasons: 1) when there are no extreme values in the sample,
too small estimators are obtained, and 2) if there are extreme values in the sample, the
estimation becomes very large [2]. Rao and Molina, use annual net income information
as a welfare variable for individuals [3]. The variable has been changed by adding a fixed
quantity to always be positive and then taking the logarithmic value. Tanur et al. [4] have
implemented a model proposed by Torabi et al. [5] using the 2015 Susenas data to estimate
the average per capita consumption in districts/cities. Research on more specific objects
has also been carried out by Yusiong and Naval who have proposed an unsupervised
framework for monocular depth estimation that trains a Siamese convolutional long short-
term memory (Siamese convLSTM) network to jointly perform estimation and refinement
of depth maps using rectified stereo image pairs and produce a depth map from a single
RGB image at test time [6].
Based on the research results that have been mentioned, it is necessary to develop

a method of estimating small areas in populations that are not symmetrical with the
auxiliary variables obtained from the survey results. It is important to develop a small
area estimation method to increase the effectiveness of small sample sizes in the September
period so that the estimator value for per-capita expenditure/consumption is obtained by
utilizing information available in the March survey period.
The remainder of the paper is arranged as follows. Section 2 discusses the methods

used. Section 3 describes in detail our proposed model, lognormal small area estimation
with measurement error. Section 4 reports the implementation with Susenas 2015 da-
ta. Section 5 describes the results of the simulation study obtained. Finally, Section 6
concludes the paper.

2. Methods. To resolve the problems previously mentioned, this research used a small
area estimation approach method by considering the case of measurement error on the
auxiliary variables and applying the lognormal transformation to the interest variable.

2.1. Small area estimation. The small area estimation model was first introduced by
Fay and Herriot in 1979, popularly called the Fay-Herriot Model [7], in the form of a
model:

yi = θi + ei, θi = XT
i β + vi (1)

where ei and vi are mutually independent, E(ei) = E(vi) = 0, Var(ei) = σ2
e and Var(vi) =

σ2
v , i = 1, 2, . . . ,m. The yi component is a direct estimator for the i-th area and obtained

from the corresponding survey data, θi is an interesting parameter, ei is a sample error,
Xi = (Xi1, Xi2, . . . , Xip)

T is the auxiliary variable and vi is an area random effect. The

natural way to estimate θi in Equation (1) is to replace β and vi with β̂ and v̂i respectively.
Two model approaches which are applied in small area estimation are basic area-level

and the basic unit-level model [8]. The basic area-level model is a model based on the
availability of supporting data that only exist for a certain area level:

yi = XT
i β + vi + ei (2)

Furthermore, the basic unit-level model is a model in which the supporting data available
are compatible individually with response data, for example, Xij = (Xij1, Xij2, . . . , Xijp)

T:

yij = XT
ijβ + vi + eij (3)

with i = 1, 2, . . . ,m, and j = 1, 2, . . . , ni, also eij ∼ N (0, σ2
e).

2.2. Measurement error on the auxiliary variables. The assumption in the small
area estimation model is that the auxiliary variables are measured without errors [9].
Therefore, the auxiliary information commonly used is the data from the census and
administrative or registry. However, in reality, the census and administrative data are
often not fully available and up to date to be used as the auxiliary information. The
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solution is to use survey data as auxiliary information in a small area estimation model,
although consequently the use of survey data may contain sample errors.

Carroll et al. explain that there are two widely used measurement error models [10].
The first model is the classic measurement error model, with the form

wi = Xi + ηi (4)

where w is the auxiliary variable that contains an error, and X is the actual variable
value. The η component is an additive error with ηi ∼ N

(
0, σ2

η

)
; it assumes that η and

X are mutually independent, w fluctuates around X, diversity of w is more than X, and
E(wi|Xi) = Xi, then w is an unbiased estimator for X. The second model is the Berkson
measurement error model:

Xi = wi + ηi (5)

where X is the actual variable value, and w is the auxiliary variable that contains an
error. The η component is an additive error with ηi ∼ N

(
0, σ2

η

)
; it assumes that w and

η are mutually independent, X fluctuates around w, and E(Xi|wi) = wi, then X is an
unbiased estimator for w.

2.3. Lognormal transformation model. A random variable X has a lognormal dis-
tribution if the transformation Y = ln(X) has a normal distribution, the pdf for X:

f
(
X|µ, σ2

)
=

1√
2πσX

e−
(ln(X)−µ)2

2σ2 X > 0 (6)

Expected value and variances value of X ∼ lognormal (µ, σ2):

E(X) = eµ+
1
2
σ2

and Var(X) = e2µ+σ2
(
eσ

2 − 1
)

(7)

The parameters µ and σ:

µ = ln

(
E(X)2√

Var(X) + E(X)2

)
and σ2 = ln

(
1 +

Var(X)

E(X)2

)
(8)

3. Proposed Model. The basic model in this paper refers to Torabi et al., with auxiliary
variables at the area level, w, which contains measurement errors [5]:

yij = β0 + wiα + vi + eij, Wij = wi + ηij, (i = 1, 2, . . . ,m; j = 1, 2, . . . , ni) (9)

Modification model. The modified model hereinafter referred to the small area esti-
mation model with measurement error on the auxiliary variable (SAE-ME):

y∗ij = XT
ijβ + wiα + vi + eij, Wi = wi + ηi (10)

where y∗ij = log(yij) [11], yij is the value of the interesting variable for the j-th unit in
the i-th area; Xij is an auxiliary variable at the unit level in the i-th area (fixed effect);
β is a fixed effect coefficient; wi is the actual value of the area-specific covariate, which
is unknown related to yij, with wi ∼ N (µw, σ

2
w); α is a coefficient of the variable with

measurement error; vi is the area random effect with vi ∼ N (0, σ2
v); eij is a model error

with eij ∼ N (0, σ2
e); components vi, eij and wi are assumed to be mutually independent;

Wi is an auxiliary variable at area level with measurement errors; η is the measurement
error on the auxiliary variable with ηij ∼ N

(
0, σ2

η

)
; m is the number of areas.

Based on Equation (10) we get the expected values and variance values of y∗ij:

E
(
y∗ij
)
= XT

ijβ + αµw and Var
(
y∗ij
)
= σ2

v + σ2
e + α2σ2

w (11)

Equation (10) can be written in the form of a matrix:

y∗ = Xβ + Zwα + Zv + e (12)
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where y∗ = (y∗
1, . . . ,y

∗
m)

T is the vector of the interesting variable with sized n× 1; y∗
i =(

y∗
i1, . . . ,y

∗
ini

)T
with the size ni × 1; X = (X1, . . . ,Xm)

T is a fixed effect matrix of size

n × p, p is number of fixed variables, with Xi = (Xi1, . . . , Xini
)T matrix of size ni × p;

β = (β1, . . . , βp)
T is a fixed effect coefficient vector with size p × 1, α is scalar value for

coefficient of auxiliary variable with measurement error, w = (w1, . . . , wm)
T is auxiliary

variable vector with measurement error with the sizem×1; v = (v1, . . . , vm)
T is the vector

of area random effect with the size m × 1; e = (e1, . . . , em)
T with ei = (ei1, . . . , eini

)T is
the vector of error model with the size n × 1; Z = ⊕m

i=1Zi = diag (Z1, . . . ,Zm) with the
size n×m, Zi = 1ni

is a vector of size ni with all elements of 1.
Equation (12) produces the values of E (y∗|v) and Var (y∗|v):

E (y∗|v) = Xβ + µwα1n + Zv and Var (y∗|v) = α2σ2
w1n + σ2

e1n (13)

where 1n is a vector of the size n with all elements of value 1. Based on Equation (13),
the value of E(y|v) or ŷ is obtained through back transformation, and then obtained in
the form of an equation:

ŷ = exp
[
(Xβ + µwα1n + Zv) + 0.5

(
α2σ2

w1n + σ2
e1n

)]
(14)

By substituting the estimators of the model parameters with
(
β̂, µ̂w, α̂, v̂i, σ̂

2
e , σ̂

2
w

)
based

on the sample data, we produce

ŷ = exp
[(

Xβ̂ + µ̂wα̂1n + Zv̂
)
+ 0.5

(
α̂2σ̂2

w1n + σ̂2
e1n

)]
(15)

The target parameters obtained from the sum of the observed values that are members
of the sample, with index (s), and unit values that are not sample members, with index
(r). The average value by area is estimated by

ˆ̄Yi =
1

Ni

∑
(s)

y +
∑
(r)

ŷ

 (16)

Equation (16) is obtained with the following stages:

- estimating the variance component (σ̂2
v , σ̂

2
e , σ̂

2
w) with the restricted maximum likeli-

hood (REML) method,
- estimating the coefficient of a random variable that has a measurement error (α̂),
referred to Torabi et al. [5]:

α̂ =

(
σ̂2
w

σ̂2
w + σ̂2

η

)−1 ∑
i∈s (yi − ȳs) (wi − w̄s)∑

i∈s (wi − w̄s)
2 , and σ̂2

η =

∑m
i=1

∑ni

j=1 (wi − w̄s)
2

(
∑

i ni)−m
(17)

- estimating the coefficient of a fixed effect variable
(

β̂
)
:

β̂ =
(
XTV−1X

)−1 (
XTV−1y∗ −XTV−1α̂µ̂w

)
(18)

with V = σ̂2
vJni

+ α2σ̂2
wJni

+ σ̂2
eJni

, Jni
is a square matrix with size ni × ni,

- estimating the area random effect value (v̂i) [12]:

v̂i =
σ̂2
v

σ̂2
v + α̂2σ̂2

w + σ̂2
e/ni

(
ȳ∗
i − X̄iβ̂ − wiα̂

)
(19)

ȳ∗
i is vector of the average value of y∗ij at area level, X̄i is matrix of average value

of fixed variables of Xij at area level, and wi is vector of the auxiliary variable with
measurement error at area level.
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After obtaining Equation (16), the estimator value for provincial average is obtained
from

ˆ̄Y =
1

N

m∑
i=1

ˆ̄Yi ×Ni (20)

The next stage is to estimate the value of mean squared error, denoted mse
(
ˆ̄Yi

)
by using

the bootstrap method [3], through equation:

mse
(
ˆ̄Y∗

i

)
= B−1

B∑
b=1

(
ˆ̄YH

i∗ (b)− ˆ̄Yi∗(b)
)2

(21)

Assume Ȳ∗
i = X̄T

i β̂ +w∗
i α̂ + v∗

i is the bootstrap version of the target parameter Ȳi =

X̄T
i β + wiα + vi. Then, by using bootstrap data, the bootstrap version ˆ̄YH

i∗ from the

EBLUP estimator ˆ̄YH
i which is generated from ˆ̄YH

i∗ = X̄T
i β̂∗ +w∗

i α̂
∗ + v̂∗

i with β̂∗, α̂∗, v̂∗
i

is obtained in the same way to obtain β̂, α̂ and v̂i, but by using bootstrap sample data.

The bootstrap estimation theory of mse
(
ˆ̄YH

i

)
is determined to refer to mseB

(
ˆ̄YH

i

)
=

E
(
ˆ̄YH

i∗ − Ȳ∗
i

)2
. This bootstrap estimate is an approximation of Monte Carlo simulation,

where each stage is repeated as many large numbers, B. At this stage a number of B
values of Ȳ∗

i are obtained, i.e., Ȳ∗
i (1) , . . . , Ȳ

∗
i (B) of the actual value of the bootstrap is

Ȳ∗
i , along with a number of B values from ˆ̄YH

i∗ .

4. Implementation with Susenas 2015 Data. The 2015 Susenas data from West
Java Province were applied using the modified model, according to Equation (10). The
interesting variable was the log of an average of per capita household consumption at the
unit level, which was obtained from the September period. The unit in this study was
a sub-district, while the area level in this study was the district/city. When using sub-
districts as a unit level, the weaknesses of application to the model emerge. In the concept
of small area estimation, the unit level auxiliary variable that is used must be without
error. The average information of household per-capita consumption in September is used
as an interesting variable (y), which is the aggregate of households in the sub-district, so
correction needs to be done first.

One of the auxiliary variables related to the household consumption and population
composition in each district was the availability of facilities to meet household consump-
tion needs, which was obtained from PODES (Village Potential) data in 2014. Information
on the proportion of the total restaurants and food and drink stalls is adjusted to the
composition of the population in each district, used as fixed variables. Variable X1 is the
proportion of the number of restaurants to the total population in each district. Variable
X2 is the proportion of the number of food and drink stalls with a total population in
each district. The W variable is the log of the average per capita household consumption
at the district level resulting from the March Susenas.

Table 1 shows the district/city level estimates obtained based on Equation (16), by
adding recorded unit information and units obtained from the estimated SAE-ME or
SAE methods. Units that were not recorded in September were previously estimated
by the SAE-ME method by using the information in March as an auxiliary variable
with measurement errors, and by the SAE method with an auxiliary variable without
measurement errors.

Table 1 presents the goodness value model of the SAE-ME estimation model with
the SAE estimation. Table 1 shows the root mean squared error (rmse) values for the
two types of models. the root mean square error (rmse) is a frequently used measure
of the differences between values (sample or population values) predicted by a model
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Table 1. Estimation value and goodness of model by area and estimation
method in West Java Province, 2015

Number of
districts/
cities

SAE-ME SAE

Estimator
Relative
bias

rmse CV Estimator
Relative
bias

rmse CV

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 1053733 −0.049 30388 11.57 1077328 −0.249 72818 27.71
2 978637 0.011 26476 9.61 937416 −0.142 47530 17.25
3 766866 0.001 26440 9.04 680416 0.155 45770 15.65
4 890268 0.014 26700 10.50 873180 −0.256 74239 29.20
5 898527 −0.038 29237 13.39 759267 −0.140 47426 21.72
6 708168 0.014 26154 9.40 593710 −0.129 44403 15.96
7 774911 0.017 26895 11.48 720901 0.090 33942 14.49
8 883285 −0.006 26657 9.63 835468 −0.202 61424 22.19
9 762396 0.036 26986 11.70 678524 0.087 32929 14.28
10 877221 0.015 26450 10.85 848665 0.431 112892 46.33
11 924221 0.021 26990 8.06 913130 0.410 106950 31.95
12 778274 0.021 26688 9.97 734721 −0.024 28009 10.46
13 859237 0.053 28799 11.31 826356 −0.066 33075 12.99
14 905313 0.023 26282 10.08 890117 0.198 55652 21.34
15 887475 −0.030 28200 8.32 876411 −0.145 48021 14.17
16 1246485 0.027 26589 9.53 1305776 −0.006 26574 9.52
17 650530 0.005 26510 8.81 618905 0.029 26941 8.96
18 695975 0.030 26671 10.62 671424 −0.032 28370 11.30
19 1600269 −0.047 30578 12.10 1612832 −0.080 35779 14.16
20 1104629 −0.001 25947 9.37 1104629 −0.095 37467 13.53
21 1502913 0.015 26160 10.56 1613311 0.384 100611 40.63
22 927319 0.011 26775 11.74 927319 0.119 38947 17.08
23 1635938 0.047 27682 9.79 1635938 0.386 101352 35.84
24 2033990 −0.020 27825 11.31 2083311 0.078 31987 13.00
25 1332503 0.031 27403 10.89 1332503 0.142 43645 17.34
26 876442 0.025 26549 10.75 876442 −0.014 26991 10.93
27 890235 −0.004 26695 13.33 890235 0.027 26850 13.41

Province 1053671 0.008 27212 10.51 1037430 0.035 50763 19.31

or an estimator and the values observed. It is used to estimate positional accuracy, to
measure how well your model performed. It does this by measuring the difference between
predicted values and the actual values.
From Table 1, it can be seen that the small area estimation model with measurement

errors in the auxiliary variable (SAE-ME) produces a smaller rmse value. This shows
that the distribution of estimator data produced by the small area estimation method
with the error measurement method (SAE-ME) is relatively more reliable. The difference
in the predicted value with the SAE-ME method is smaller, and this model is better
at estimating. The same case can be seen from the resulting coefficient of variation,
which shows that the estimation results generated by the SAE-ME approach are more
homogeneous. The SAE-ME model produces a more homogeneous estimation value, and
the resulting estimate is closer to the average value. So using the SAE-ME method will
produce estimates with a value distribution that is closer to the average value. The
SAE-ME method provides good and accurate prediction results.
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5. Simulation Study. We conducted simulation studies on the proposed prediction
model’s (SAE-ME) goodness test and its basic prediction model (SAE), and each was
obtained by considering the presence of an element of measurement error in the auxiliary
variable. It is assumed that yij for the population unit is generated from model (10)
with β0 = −1, β1 = 2, β2 = −1, α = 1, µw = 14, σ2

v small = 0.01, σ2
v medium = 0.05,

σ2
v large = 0.1, σ2

e = 0.01, σ2
w small = 0.01, σ2

w medium = 0.05, σ2
w large = 0.1. The population

has N = 61100 units spread over 27 areas (m) of each size (Ni): 4000, 4400, 3100, 3100,
3600, 3900, 2600, 3100, 4000, 2600, 2600, 3100, 2900, 1600, 2900, 2300, 1600, 1000, 600,
700, 2900, 500, 1200, 1100, 300, 1000, and 400. Sample size (ni) in the specified area is
respectively: 23, 18, 17, 20, 19, 20, 17, 16, 22, 17, 14, 20, 16, 12, 20, 15, 13, 8, 5, 7, 18, 5,
12, 9, 3, 10, and 4.

For this purpose, we produce B = 5000 independent sets with normal distribution
{vi(b); i = 1, . . . ,m}, {eij(b); j = 1, . . . , Ni; i = 1, . . . ,m}, (b = 1, . . . , B), with a mean val-
ue of zero and the variance specified for σ2

v , σ
2
w and σ2

e . We also generated {wi; i=1, . . . ,m}
normally distributed with mean value µw and variance σ2

w. Using {vi (b) , eij(b), wi}, a to-
tal of B, {yij(b); j = 1, . . . , Ni; i = 1, . . . ,m} set of populations is obtained with Equation
(10). In each data generated, parameters are obtained according to the data equation
that has been generated and then applied to Equations (11)-(21), so that the simulation
results are obtained from each of the average value of relative bias (RBi), average value
of root mean squared error (RMSE i) and average value of coefficient of variation (CV i),
the results can be seen in Table 2. The values of RBi, RMSE i and CVi are obtained from:

RBi =
1
B

∑B
b=1

ȳi s indirect−ȳi population

ȳi population
, RMSE i =

√
1
B

∑B
b=1 (ȳi s indirect − ȳi population)

2, and

CVi =
RMSE i

ȳi population
× 100%.

Table 2. The value of the goodness of the model according to the estima-
tion method, the variance value of area random effect (σ2

v) and the variance
value of the auxiliary variable with measurement error (σ2

w)

Goodness

of model

value

Variance value

of area random

effect
(
σ2
v

)
Method Method Method

SAE-ME

(Small σ2
w)

SAE
SAE-ME

(Medium σ2
w)

SAE
SAE-ME

(Large σ2
w)

SAE

(1) (2) (3) (4) (5) (6) (7) (8)

Average

value of

relative bias

Small 0.1099 0.1100 0.1064 0.1066 0.1201 0.1215

Medium 0.1221 0.1223 0.1092 0.1100 0.1007 0.1016

Large 0.2554 0.2566 0.0918 0.0928 0.1213 0.1253

Average

value

of RMSE

Small 176921 177332 175336 176286 181737 185409

Medium 187017 187856 179999 181851 177393 182118

Large 296988 300885 183717 187406 194783 202571

Average

value

of CV

Small 24.28 24.34 24.05 24.18 24.96 25.47

Medium 25.43 25.54 24.72 24.97 24.25 24.96

Large 41.51 42.07 25.15 25.63 26.96 28.10

6. Conclusion. The use of information with measurement errors as an auxiliary variable
in the form of random variables can result in estimating small areas at the provincial and
district/city level by first estimating unregistered units (sub-districts). Estimates are
made for the average per capita consumption in September by using the results of the
March period survey as an auxiliary variable at each unit level.

The application of the 2015 Susenas data to the small area estimation model with mea-
surement errors has resulted in a better estimation than without regard to measurement
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errors. The small area estimation model with measurement error on the auxiliary vari-
able produces a smaller standard deviation and coefficient of variation value compared to
the small area estimation model without regard to measurement errors on the auxiliary
variable.
Further research related to this problem is the development of a small area estimation

model for repeated data in a certain time unit. The model that is formed includes the
time random effect, in addition to the area random effect and the element of measurement
error on the auxiliary variables.
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