
ICIC Express Letters ICIC International c⃝2021 ISSN 1881-803X
Volume 15, Number 6, June 2021 pp. 545–552

TEST FIRST VS TEST LAST: A STUDY OF SOFTWARE QUALITY
IN ACTION

Wantana Sisomboon

Faculty of Informatics
Burapha University

169 Longhard Bangsaen Road, Saensuk, Muang, Chon Buri 20131, Thailand
wantanasi@buu.ac.th

Received October 2020; accepted January 2021

Abstract. Scrum is an iterative and incremental approach to developing software. This
approach breaks down large projects into small pieces of user stories that can be completed
within time-boxed iterations. Each iteration is done in a process called a Sprint. A test-
ing process is conducted at the end of each Sprint (Test Last). Test Driven Development
(TDD) models strongly recommend increasing the quality of software with a short, fixed
schedule of release cycles. TDD is an agile practice in which test cases are created be-
fore coding (Test First). This paper presents a comparative code quality and productivity
case study of adopting Test Last and Test First for inexperienced programmers. Select-
ed studies include experiments comparing Test First with control groups, then analysis
of the test summary reports, online questionnaires, and focus groups. In addition, 13
experts, consisting of 3 lecturers and 10 experienced programmers, were assigned to eval-
uate software productivity and quality of the resulting software. This research describes
results from experiments investigating the distinction between the Test First and the Test
Last practices to determine. On average, the code quality produced by the two groups is
slightly different. The Test First method allowed coders to produce better quality code. In
addition, the Test First practice helped developers to complete test cases in approximately
91.02% of the total cases. Furthermore, the average time in development for all teams
was decreased by 17.27%.
Keywords: Test driven development, Scrum, Software development process, Inexperi-
enced programmers, Code quality

1. Introduction. Testing is taken seriously by software development companies in Thai-
land. In software testing, it consists of 2 processes which are verification and validation.
Verification is the process of checking whether the developer team built the software prod-
uct correctly and the validation process is used to check that the product meets the user
requirements [1]. The costs of software defects can be measured by the impact of the
defects. The sooner defects are found, the less money is required to fix their cost [2].

Currently, companies apply various software development methodologies, depending on
project resources and customer’s requirements. Although most of the software companies
quickly adopted the Agile technique as their process for producing software products,
many defects were found in the User Acceptance Testing (UAT) process.

In contrast, many research efforts and experiments show that software products pro-
duced by Test Driven Development (TDD) practice gave better quality. TDD is an agile
practice in which test cases are created before coding. However, developers themselves
often do not select the TDD development process. This is due to fact that programmers
assign a higher priority to coding than the testing process. Nevertheless, TDD or Test
First models are strongly recommended for increasing the quality of software created using
a short, fixed schedule of release cycles [3].

DOI: 10.24507/icicel.15.06.545

545

546 W. SISOMBOON

The main objective of this research study is to perform an experiment using under-
graduate students in an academic software engineering environment as programmers and
testers in order to investigate the distinction between the quality of code written using
the Test Last and Test First practices and verify the assertions made previously.

2. Literature Review. This section is a review of works about adapting Scrum and
test driven development approaches in software development. It reviews selected, relevant
sources to provide a description, summary, and critical evaluation of these works in relation
to the research problem being investigated.

2.1. The background of Scrum. Scrum is defined as a repetitive framework for soft-
ware and product development. It is an Agile methodology which is one of the most
famous project management methodologies. A key principle in Scrum is that during all
phases of development, the customer is involved. The Scrum workflow consists of coordi-
nation between the Scrum team and the product owner. A cross-functional Scrum team
includes developers, testers, and other specialists [4,5]. In this experiment, the Scrum
model operated by dividing a project into small tasks is called Sprints. One task was
writing a “User Story” [6] which allows non-technical people to define the high-level ob-
jective in a single sentence, structured as follows: “As a [persona], I [want to], [so that]”.
In the testing context, a user story generally includes a definition of “Done” which de-
scribes a completed task for a tester. Usually, testing in the Scrum Sprint is defined as
Unit testing. The test is conducted at the end of a Sprint. In addition, a UAT test is
conducted in the Sprint Review. In this paper this method is called “Test Last”.

2.2. Test Driven Development (TDD). Test Driven Development (TDD) was intro-
duced by Kent Beck in the late 1990s as part of the eXtreme Programming (XP) method.
The bugs are found and fixed earlier when it is cheaper to fix them. This experiment
adopted a TDD process which is defined by the 3 following rules: 1) Unless it is to allow
a failed unit to test pass, developers are not permitted to write any production code; 2)
Developers are not supposed to write more than adequate unit tests to fail, and compila-
tion failures are failures; 3) Only necessary product code can be written by developers to
make previously failing unit test pass [7,8]. The basic idea behind TDD is to write and
fix failed tests before writing new code. In this paper this method is called “Test First”.

2.3. TDD family: BDD and ATDD. This section aims to describe the different test-
ing practices of TDD, ATDD, and BDD. Acceptance Test Driven Development (ATDD) is
a software development methodology based on an agile framework where customers, devel-
opers, and testers are involved in the acceptance test. ATDD includes acceptance testing,
but is done before writing code. It emphasizes writing acceptance tests [9]. Behavior-
Driven Development (BDD) is known as a descendant of TDD and ATDD. BDD is an
approach that defines the system’s behavior as user stories that are executable. It re-
flects on the actions of the system for users who interact with the system and ensures
that all participants in the project communicate in the same language. It simplifies the
translation between the language of software development and the domain language of
the user. Behavior-driven development allows project stakeholders to work together to
ensure that the best software is created to meet the needs of the users and ensures that
all participants in the project communicate in the same language [9].

2.4. Refactoring. The last process of TDD is refactoring. Refactoring is a transfor-
mation technique for existing code, improving its internal structure without altering its
external behavior [10]. The idea of refactoring is to carry out the changes as a series
of small steps without introducing new defects into the system. In this experiment, 13
refactoring techniques were selected from the research of Kaur and Singh in 2017. They

ICIC EXPRESS LETTERS, VOL.15, NO.6, 2021 547

extracted the refactoring techniques from ten research papers [11] and identified the fol-
lowing types of refactoring: 1) Extract Method, 2) Extract Class, 3) Extract Super class,
4) Extract abstract class, 5) Move Method, 6) Code Transformations, 7) Replace Method
with Method Object, 8) Replace Data Value with Object, 9) Encapsulate Field, 10) Re-
place Temp with Query, 11) Extract Aggregate Classes, 12) Wrap Return value, and 13)
Safe Delete, and Replace Constructor with Builder method.

3. Methods. A formal experiment to assess internal consistency, programmer efficiency,
and programmer expectations to equate test based creation with Scrum techniques was
performed. 74 students were divided into 8 teams, but only 5 teams were chosen for this
study. The other 3 teams changed their projects during the second cycle because the
requirements from the sponsors changed, so the researcher decided to remove them from
the experiment.

3.1. Research questions. The experiment was conducted to answer three research ques-
tions:

1) Which practice of testing will generate higher software code quality, Test First or
Test Last?

2) What methods do developers use during refactoring to enhance the code?
3) What are the main advantages and disadvantages of using Test First and Test Last?

3.2. Research design. We carried out experimental tests with groups of 9 developers.
The 45 students were divided into 5 teams. The developers were not familiar with TDD.
They were trained in these methodologies during the project. The developers used the
robot framework as an automatic test tool. The experiment was divided into 3 projects
for 5 teams as shown in Table 1.

Table 1. Team project details

Method Project 1 Project 2 Project 3 Project 4 Project 5

1
Project
name

Online
examination

Short course
training

Recreation
service management

Queue
management

Case
management

2
Product
concept

Nursing 4.0 Nursing 4.0
Smart

government
Smart

government
Smart

government

3
Number of
test cases

67 150 53 62 341

4
Product size

(LOC)
7,453 8,340 2,100 5,167 14,112

5 Testing level
Unit test,

integration test
Unit test,

integration test
Unit test

Unit test,
integration test,

system test
Unit test

The participants were sophomore year students. The purpose of the research was to
prepare them for four important subjects for their future career. The main subject was
team software development. The three other subjects were software testing, data analysis
and visualization, and contemporary web development. All subjects were integrated into
one project with a learning method called Project Based Learning (PBL). The students
had background in basic web programming languages, but limited experience in complex
system design and development. For most of the students, the average size of software
they had worked on previously was only 7,000 LOC (Line of Code).

The duration of the experiments was 15 weeks. The software development process
used was Scrum. The testing models were mixed, using both Test Last and Test First
practices. The formal evaluation was divided into three cycles. At the end of each cycle,
team developers met with customer representatives and team project assessors.

548 W. SISOMBOON

In Figure 1, Cycle 1 used the “Test Last” practices at the end of each Sprint, while
Cycles 2 and 3 used the “Test First” practice. In the first cycle, software testing took
place at the end of the Sprint. The duration of first cycle was 7 weeks, while cycles 2 and
3 lasted 4 weeks.

Figure 1. Research design

4. Experiment Result. In this section, the results of the quantitative and qualitative
findings of the experiment are given. Both Test First and Test Last practices are essential
for an efficient software development process. This study involved implementing projects
that have a business priority to offer particular software products to consumers in close-
to-industry environments, where measurement data is continuously collected.

4.1. Quality of code. In this experiment, the code coverage metrics were disabled in
the Test First phase during this experiment. The decision to do that was based on the
fact that Test First offers very high coverage and ensures that the entire functionality is
well checked. In addition, for the accuracy of the code, in 2012, Cauevic and Team [12]
presented the following formula to calculate the quality of code indicator:

C(x) = 1− NF (x)

N

In this formula, x represents a specific participant of the experiment, N represents a total
number of test cases produced by all participants, and NF (x) represents the number of
failed test cases [3]. Table 2 shows 1,149 test cases were produced by all participants, 667
test cases were produced for Test Last, while 476 were developed for Test First. Overall,

Table 2. Comparison of Test First and Test Last test cases

Team# LOC
Test Last Test First

Total Pass Fail C(x) Total Pass Fail C(x)
1 7,453 67 60 7 0.99 67 65 2 0.97
2 8,340 150 132 18 0.97 66 66 0 1.00
3 2,100 47 40 7 0.99 53 40 13 0.97
4 5,167 62 62 0 1.00 62 62 0 1.00
5 14,112 341 251 90 0.87 228 186 42 0.91

Total 37,172 667 545 122 0.82 476 419 57 0.88

ICIC EXPRESS LETTERS, VOL.15, NO.6, 2021 549

964 test cases passed and 179 failed. Code quality of the Test First group was slightly
higher than that of the Test Last group. Only Team 3 using Test First produced lower
code quality with Test First. In contrast, overall results show that quality of code from
Test First was slightly different from Test Last. In the aspect of error code, Test Last
produced 18.13% of code defects while Test First produced fewer errors at 11.97%. Test
First was slightly better. They had 1 month more experience with Test Last than Test
First. In our experiments, Test First produced slightly higher quality result than Test
Last.

4.2. Testing results from Scrum and TDD methods.

4.2.1. Development time analysis. Table 3 illustrates a comparison between Test First
and Test Last practices. The table shows data related to a percentage of decreased
development time using Test First compared with using Test Last. The results show that
every team spent less time developing projects when using Test First. The reduction in
time of teams 1, 2, and 3 was more than 20 percent, while teams 4 and 5 spent less than
10 percent less time. In contrast the number of test cases for Test First of teams 4 and 5
is four times larger than for their Test Last. In conclusion, Test First reduces time spent
in development better than using Test Last.

Table 3. Comparison of development time between Test First and Test
Last practices

Team#
Test Last development

time (Hours)
Test First development

time (Hours)
Time

reduction
1 150 111 26.00%
2 120 88 26.67%
3 100 78 22.00%
4 115 108 6.09%
5 125 118 5.60%

Total 610 503 86.36%

4.2.2. Refactoring analysis. Information about refactoring was collected manually, and
then recorded in a testing summary report. The report shows the results with fail and pass
codes export from an automation tool called robot framework. A walkthrough technique
was adopted to measure the code quality. This technique is an informal review led by
an assessor. Assessors are programmers with 5 to 10 years of experience. A refactoring
checklist was designed and evaluated by specialists, and then adopted for this experiment.
In addition, ten months after the experiment more data was collected from the same group
of participants to evaluate and monitor the behavior of developers. The participants were
educated at real software companies as student trainees for 16 weeks. The evaluations
were made by the author using information collected via online surveys and interviews.

There are 10 different signs that code needs refactoring, as shown in Table 4. The
percentages of participants in the “Refactoring needs” column indicate that “Lack of
comments” happened frequently. It is a common mistake made by many junior developers
when writing software. The next most frequent refactor needs are “Redundant code” and
“Long methods, functions, or parameter lists”. In contrast, the second evaluation found
that “Lack of comments” decreased rapidly while other refactoring needs were increasing.

Table 5 shows refactoring activities as mentioned in Section 2. 7 activities were adopted
for the project development in TDD model as shown in Table 2. The most popular
activity was “Extracting the method makes the code simpler”. The next most popular
activities were 1) Renaming variables, files, classes and functions, 2) Adding comments

550 W. SISOMBOON

Table 4. Refactoring analysis

Refactoring needs 1st evaluation 2nd evaluation Remark
1 Redundant code 22.5% 29.41% Increase
2 Lack of comments 30% 11.76% Decrease

3
Long methods, functions,

or parameter lists
22.5% 23.53% Increase

4 Difficult to understand 15% 17.65% Increase
5 Contains difficult code 15% 17.65% Increase
6 Conditional complexity 15% N/A N/A
7 Inconsistent names 7.5% N/A N/A
8 Many global variables 7.5% N/A N/A
9 Temporary fields 7.5% N/A N/A

10
Large argument list
in procedure calls

7.5% N/A N/A

Table 5. Refactoring activities analysis

Refactoring activities Adopting teams Frequency
1 Renaming variables, files, classes and functions 1, 2, 3, 4 4
2 Extracting the method All 7

3
Adding comments in controllers, model, helpers

and views
1, 2, 3, 4 4

4 Substituting algorithms 1, 5 2
5 Breaking complex functions into smaller parts 1, 2, 3, 5 4
6 Extracting classes 1, 3 2

7
Removing a variable that is acting as a control

flag for a series of Boolean statement
2 1

in controllers, model, helpers and views, and 3) Breaking complex functions into smaller
parts.

5. Discussion. To investigate the distinction between the Test First and Test Last ap-
proaches, the feedback from 45 students in our software testing course was evaluated. In
this section, the research questions from Section 3.1 will be answered.

5.1. Question 1: Which practice of testing will generate higher software code
quality, Test First or Test Last? The results in the tables from previous chapter
[Tables 1, 2, 3, 4 and 5] show that Test First code quality and productivity are slightly
better than Test Last.
The code quality produced by the two groups was slightly different. Test First result-

ed in slightly better quality code (6.16 percent higher). In addition, Test First helped
developers to complete test cases in approximately 91.02 percent of the total cases. Fur-
thermore, the average time in development for all teams decreased by 17.27%.

5.2. Question 2: What methods do developers use during refactoring to en-
hance the code? The participants indicated that the following were the top 4 refactoring
methods used during the project.
1) The code was made easier to understand by all teams using “Extracting the method”.
2) Four teams used 1) “Renaming variables enhances readabilit”, 2) “Adding feedback

and renaming variables enhances maintenanc”, and 3) “Breaking complex functions into
smaller parts makes it much easier to change an algorithm”.

ICIC EXPRESS LETTERS, VOL.15, NO.6, 2021 551

3) Two teams used 1) “Substituting algorithms provides benefits for efficiency” and 2)
“Extracting classes simplifies the code”.

4) One team used “The program stays clean by extracting groups”.

5.3. Question 3: What are the main advantages and disadvantages of using
Test First and Test Last?

Test Last Advantage: Students are more familiar with Test Last than Test First.
In addition, during the cooperative education course, most of the development teams in
software companies were using Test Last. Some students state that Test Last provided
ideas for creating more test cases because they had more experience with the system
they were assigned to test. Test Last Disadvantage: Because of the flexible or unclear
requirements, sometimes testers created unnecessary tests. Furthermore, many software
project teams cannot test their project because the coding phase lasts longer than the
Sprint time box.

Test First Advantage: Test First is better because they can plan test cases in ad-
vance and the test cases were written according to the system requirements. In addition,
refactoring helped to improve code and software quality. It helps developers to write test
cases to cover all important functions before they start developing software. As a result
of the refactoring process, their code was easy to understand and readable. Test First
helped to reduce adding new features during development because the code was arranged
properly, and in the refactoring phase, a team can improve the code structure. Test
First Disadvantage: From the observations by a focus group, the researchers found
that new testers and developers cannot adopt Test First until they have knowledge about
automated testing and refactoring.

6. Conclusion and Future Work. This study presents the outcome of an experiment
in the software engineering field with undergraduate students which was performed to
explore the difference between the Test First and the Test Last practices. On average, the
code quality produced by the two groups were slightly different. The Test First method
allowed coders to produce better quality code. In addition, the Test First practice helped
developers to complete test cases in approximately 91.02% of the total cases. The average
time spent in development for all teams was decreased by 17.27%. Test First is better
than Test Last because developers could plan test cases in advance and the test cases
were written according to the system requirements. In addition, refactoring helped to
improve code and software quality. On the other hand, students are more familiar with
Test Last than Test First and new testers and developers cannot adopt Test First until
they have knowledge about automated testing and refactoring. However, this study has
a few limitations. First, only one reviewer manually performed the qualitative study of
the Internet questions in the survey. Therefore, the review may be biased. Although
the actions of 45 students were evaluated in terms of generalizability, our study is not
comprehensive. Second, during the experiment, participants reported their defects at
the end of a cycle, and then the defects were corrected. In future work this should be
reconsidered and the defects collection tool re-designed. Third, the refactoring methods
were reported as group work. The result of the experiment would be more reliable if we
collected the data individually. Finally, it might be better to study and compare “the
software testing techniques/methodologies/frameworks” instead of comparing an agile
framework with a direct testing driven development. In addition, it is important to
consider establishing a proper security management mechanism in which each tester, as
well as the developer, can protect their work in different stages of software development,
including databases, servers, resources, and so on, in order to safeguard all the functions
of the software development process.

552 W. SISOMBOON

Acknowledgment. This work is partially supported by Faculty of Informatics, Burapha
University.

REFERENCES

[1] Y. Ghadi, M. Sh. Daoud, F. Kharbat and T. Elamsy, Evaluation of the difference between verification
and validation of software and analyzing the significance among both, ICIC Express Letters, Part
B: Applications, vol.10, no.10, pp.885-893, 2019.

[2] B. George and L. A. Williams, An initial investigation of test-driven development in industry, Proc.
of the 2003 ACM Symposium on Applied Computing (SAC), Melbourne, FL, USA, pp.1135-1139,
2003.

[3] A. Nanthaamornphong, Test-driven development in HPC science: A case study, The Computing in
Science & Engineering, pp.98-113, 2018.

[4] A. Srivastava, S. Bhardwaj and S. Saraswat, SCRUM model for agile methodology, 2017 Internation-
al Conference on Computing, Communication and Automation (ICCCA), Greater Noida, pp.864-869,
2017.

[5] F. Hayat, A. U. Rehman, K. S. Arif, K. Wahab and M. Abbas, The influence of agile methodology
(Scrum) on software project management, The 20th IEEE/ACIS International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),
Toyama, Japan, pp.145-149, 2019.

[6] F. Dalpiaz and S. Brinkkemper, Agile requirements engineering with user stories, IEEE the 26th
International Requirements Engineering Conference (RE), Banff, AB, Canada, pp.506-507, 2018.

[7] Z. Khanam and M. N. Ahsan, Evaluating the effectiveness of test-driven development: Advantages
and pitfalls, International Journal of Applied Engineering Research, vol.12, no.18, pp.7705-7716,
2017.

[8] N. Agarwal and P. Deep, Obtaining better software product by using test first programming tech-
nique, The 5th International Conference – Confluence the Next Generation Information Technology
Summit (Confluence), Noida, India, pp.742-747, 2014.

[9] M. Alhaj, G. Arbez and L. Peyton, Approach of integrating Behaviour-Driven Development with
Hardware/Software codesign, International Journal of Innovative Computing, Information and Con-
trol, vol.15, no.3, pp.1177-1191, 2019.

[10] I. Verebi, A model-based approach to software refactoring, IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), Bremen, pp.606-609, 2015.

[11] G. Kaur and B. Singh, Improving the quality of software by refactoring, International Conference
on Intelligent Computing and Control Systems (ICICCS), Madurai, pp.185-191, 2017.

[12] A. Cauevic, S. Punnekkat and D. Sundmark, Quality of testing in test driven development, The 8th
International Conference on the Quality of Information and Communications Technology, Lisbon,
Portugal, pp.266-271, 2012.

