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ABSTRACT. Recognition of plant leaves and diseases from images is a challenging task in
computer vision and machine learning. This is because various problems directly affect
the performance of the system, such as the leaf structure, differences of the intra-class,
simalarity of shape between inter-class, perspective of the image, and even recording time.
In this paper, we propose the ensemble convolutional neural network (CNN) method to
tackle these issues and improve plant leaf recognition performance. We trained five CNN
models: MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception, ac-
cordingly to discover the best CNN based model. Ensemble methods, unweighted average,
weighted average, and unweighted majority vote methods were then applied to the CNN
output probabilities of each model. We have evaluated these ensemble CNN methods on
a mulberry leaf dataset and two leaf disease datasets: tomato and corn leaf disease. As a
result, the individual CNN model shows that MobileNet V2 outperforms every CNN model
with an accuracy of 91.19% on the mulberry leaf dataset. The Xception combined with
data augmentation techniques (Height Shift+ Vertical Flip+Fill Mode) obtains an accu-
racy of 91.77%. We achieved very high accuracy above 99% from the DenseNet121 and
Xception models on the leaf disease datasets. For the ensemble CNNs method, we select-
ed the based models according to the best CNN models and predicted the output of each
CNN with the weighted average ensemble method. The results showed that 3-Ensemble
CNNs (3-EnsCNNs) performed better on plant leaf disease datasets, while 5-EnsCNNs
outperforms on the mulberry leaf dataset. Surprisingly, the data augmentation technique
did not affect the ensemble CNNs on the mulberry leaf and corn leaf disease datasets. On
the other hand, application of data augmentation was slightly better than without only on
the tomato leaf disease dataset.

Keywords: Plant leaf recognition, Convolutional neural network, Ensemble method,
Ensemble learning method, Ensemble convolutional neural network

1. Introduction. Plants are essential to human life and can be used as food and even
medicine [1]. There is a wide diversity of plants in nature. Importantly, some plant leaves
look very similar, such as the shape of the Japanese maple and coral plants or cannabis. It
is quite difficult for people who are not familiar with the plants to identify them. Thus, the
identification of plants requires expertise, such as that of taxonomic botanists, and plant
scientists. Therefore, researchers have implemented plant identification systems so that
people without botanic knowledge can use them as an identification tool to recognize the
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plant species [2]. Usually, plants can be classified from various components, called plant
organs, such as leaves, flowers, bark, seeds, and stems. However, if we want to consider
plant diseases, most diseases are determined by the leaves. Therefore, researchers have
used plant leaves to classify plant categories and diseases [3, 4, 5, 6]. Importantly, the
spread of disease is a big problem for agriculturists because it affects agricultural products
and profit on trading. It is necessary for farmers to inspect agricultural products early to
prevent and treat the disease in time.

Due to the fast spread of disease, many researchers proposed artificial intelligence sys-
tems to stop disease spread and recognize the disease types. Many benchmark plant leaf
and plant leaf disease datasets were invented, such as PlantCLEF, Leafsnap, PlantVillage,
and PlantDoc [7, 8, 9, 10], to create effective learning models. The plant leaf images in the
benchmark datasets were typically collected from natural environments. Hence, the col-
lection of leaf images is more diverse than images collected under standardized conditions
in a laboratory, such as camera angles when capturing the leaves, different objects appear
in the image, brightness and contrast while taking the picture, zoom in and out into the
leaf, and even lose focus. These issues affect the accuracy of the plant leaf recognition
Systems.

The objective of this research is to improve plant leaf recognition based on the ensemble
CNN method.

The following are contributions of this research.

1) In this paper, we propose the ensemble convolutional neural network (CNN) method
to overcome challenges in plant leaf and plant leaf disease recognition. To discover
the best CNN model, we first trained five CNN models consisting of MobileNetV1,
MobileNetV2, NASNetMobile, DenseNet121, and Xception. Second, we chose the best
three and five CNN models, called 3-EnsCNNs and 5-EnsCNNs. Finally, the CNN
output probabilities of each CNN model were then given to the ensemble method to
do the actual classification.

2) We compared three ensemble methods, namely the unweighted majority vote, un-
weighted average, and weighted average, for the plant leaf and plant leaf disease recog-
nition. The experimental results showed that the weighted average method outper-
formed the other ensemble methods and was also significantly better than the individ-
ual CNN model.

3) This paper also provides a new standard mulberry leaf dataset for comparison of image
recognition methods. The mulberry leaf dataset contains 5,262 leaf images and includes
10 species that grow in northern, central, and northeast Thailand.

2. Related Work. Image processing and machine learning techniques have been pro-
posed to address plant leaf recognition problems. Wang et al. [11] proposed a framework
for recognizing the plant leaf with a complicated background. The feature vector was ex-
tracted from the shape of the leaf using Hu geometric and Zernike orthogonal moments.
The moving center hypersphere method was used as a classifier. The feature vector was
also extracted from the shape, color, edge, and direction of the plant leaf [11, 12]. The
feature vector was recognized using machine learning techniques, such as K-nearest neigh-
bour (KNN) and support vector machine (SVM). Chompookham et al. [13] presented a
multiple-grid method that divided the plant leaf images into sub-regions. The feature
extraction techniques, including a histogram of oriented gradients (HOG), local binary
pattern (LBP), and color histogram, were proposed to extract features from each sub-
region. Principal component analysis (PCA) was used to reduce the dimension of the
feature vector. The most correlated variables are given to the SVM classifier.
Convolutional neural network (CNN) methods are currently employed to recognize plant
leaf and disease. Atabay [14] invented a new CNN architecture with five layers for plant
leaf datasets. This CNN architecture comprises four sets of convolutional layers and one
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softmax layer. In this architecture, the exponential linear unit (ELU) is employed instead
of the rectified linear unit (ReL.U) after the max-pooling layer. The proposed CNN ar-
chitecture provided 97.27% accuracy on the Flavia dataset and 99.11% on the Swedish
dataset. Jeon and Rhee [15] modified the GoogLeNet architecture for plant leaf recogni-
tion by changing the first Inception layer from 3 to 5 layers. The modified Googl.eNet
architecture performed better with the leaf image dataset and the damaged leaf image.
Furthermore, Pawara et al. [6] proposed to use AlexNet and GoogLeNet for three plant
leaf datasets: AgrilPlant, LeafSnap, and Folio. Two strategies of training, including train-
ing from scratch and fine-tuned, were presented. The performance data showed that
GoogLeNet with fine-tuning outperformed AlexNet with fine-tuning and training from
scratch on AgrilPlant and LeafSnap datasets, whereas AlexNet with fine-tuning, showed
the best performance on the Folio dataset. Additionally, the CNN architectures performed
around 20% better than bags of visual word (BOW) and local descriptor combined with
the machine learning techniques (K-nearest neighbor, support vector machine, and multi-
layer perceptron).

Pawara et al. [16] used both scratch and pre-trained weights to train the AlexNet and
GoogLeNet models. The data augmentation techniques, including rotation, blur, contrast,
scaling, illumination, and projective transformation, were used to generate new images.
With these data augmentation techniques, the size of the training set was increased by
25 times. As a result, the CNN model that trained from scratch obtains more benefits
from data augmentation techniques. For the Swedish dataset, the fine-tuned AlexNet and
GoogLeNet achieved 99.76% and 99.92% accuracy. For the Folio dataset, approximately
99% accuracy was obtained from the fine-tuned AlexNet and GoogLeNet. Consequently,
the results of the AgrilPlant were 97.27% with fine-tuned AlexNet and 98.60% with fine-
tuned GoogLeNet. Moreover, Kumar and Vani [17] compared four CNN architectures
of LeNet, VGGNet, Xception, and ResNet50, and trained from scratch for tomato leaf
disease recognition. The result illustrated that the VGGNet outperformed other CNN
models.

For the ensemble CNN method, the two-level architecture, called stacked CNN [4] was
proposed. In the first level, two CNN models are created by learning the data from
the plant dataset. In the second level, the predictive values of the CNN models are then
learned again using machine learning techniques, such as random forest, gradient boosting,
and extreme gradient boosting. As a result, the stacked CNN combined with the gradient
boosting classifier was the best method and obtained the Fl-score of 0.953. Moreover,
the ensemble CNN method can also compute the probability output obtained from CNN
models to find the final result. Three ensemble methods comprised an unweighted majority
vote [18], unweighted average, and weighted average ensemble methods [19].

The CNN architectures were proposed to address many recognition applications [20,
21]. Also, the recognition performance was enhanced when the ensemble method was
combined. In this study, we proposed the framework of the ensemble CNN as follows.

3. Ensemble Convolutional Neural Networks Framework. The effect of multiple
CNN models on the ensemble learning framework is regularly better than a single CNN
model because ensemble learning can well integrate the advantages of multiple CNN
models [22]. In this section, we introduce the ensemble convolutional neural networks
(CNNs) framework to address the plant leaf recognition problems, as shown in Figure 1.
The first part of the framework combines with state-of-the-art CNN architectures, called
multiple CNNs. In order to find the baseline CNN models, five pre-trained CNN models:
MobileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception are proposed.
Subsequently, the transfer learning and data augmentation techniques are applied in this
step. The details of the ensemble CNNs are described in Section 3.1. In the second part,
the output probabilities of the CNN models are given to be recognized by the ensemble
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FI1GURE 1. The framework of the proposed ensemble CNNs

methods. We propose to use three ensemble methods, namely the unweighted majority
vote, unweighted average, and weighted average to do the actual classification. The
ensemble methods are explained in Section 3.2.

3.1. Multiple convolutional neural networks. This section briefly describes the CNN
that is combined in multiple CNNs (including MobileNetV1, MobileNetV2, Xception,
DenseNet121, and NASNetMobile). We also present the optimization algorithms (sto-
chastic gradient descent and RMSProp) that are applied to optimizing the CNN model,
as follows.

3.1.1. Conwvolutional neural network architectures.

MobileNetV1. MobileNetV1 was proposed by Howard et al. [23]. It was designed to
address a huge number of parameters by using factorized convolutions, which included
depthwise and pointwise convolutions, called depthwise separable convolution. Due to the
depthwise convolutions, each input channel is computed with the kernel size of 3 x 3. The
output of the depthwise convolutions decreased from 3 x 3 x 3 to 1 x 1 x 3 convolutions.
After that, the depthwise convolutions reduced to 1 x 1 convolutions, called pointwise
convolutions.

MobileNetV2. MobileNetV2 was proposed by Sandler et al. [24], which improved on
MobileNetV1 [23]. The MobileNetV2 architecture comprises 11 layers: one fully convolu-
tion layer, seven inverted residual blocks, one convolution layer, one average pooling layer,
and one convolution layer. The inverted residual block contains three layers: 1 x 1 con-
volution with ReLU6 activation function, depthwise separable convolution with ReL U6,
and 1 x 1 convolution with the linear transformation.

Xception. Chollet [25] designed the Xception architecture. This architecture, the ex-
treme version of the inception module, was implemented to address the problems of deeper
networks, computation time, and overfitting. The depthwise separable convolutions are
applied in the extreme inception module. The Xception architecture is divided into three
main flows: entry, middle, and exit. In the entry flow, the first layer is the input image
with 229 x 229 x 3 pixels, followed by 32 convolution layers with ReLLU, 64 convolution
layers with ReLLU, and three residual connections. In the middle flow, eight stacked resid-
ual connections are attached. The exit flow is a stack of one residual connection, followed
by two depthwise separable convolutions and global average pooling.

DenseNet121. In 2017, Huang et al. [26] invented DenseNet architecture. In this ar-
chitecture, the knowledge is collected according to the connections from the current layer
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and in the following layers are combined, called DenseNet. The DenseNet architecture
contains a convolution layer, pooling layer, three dense blocks and transition layers, one
dense block, and a classification layer. According to the size of the bottleneck, the layers
of the DenseNet can increase from 121 to 264 depth. The concept of the growth rate of
the convolution layers was implemented, and then, the next convolution layer was double
increased. The bottleneck structure is implemented and directly affected to a decrease
in the number of the parameters. Also, the number of the parameters of the DenseNet
architecture is smaller than that of the ResNet architecture.

NASNetMobile. Zoph et al. [27] proposed a neural architecture search, called NASNet.
The NASNet architecture can also be scalable by increasing normal and reduction cells
using a recurrent neural network (RNN). Then, reinforcement learning was proposed to
search for the best architecture. Also, the NASNet architectures consist of NASNetLarge
and NASNetMobile.

3.1.2. Optimization algorithms for CNN architectures. The optimization algorithms were
invented to deal with minimizing the objective function [28]. Consequently, the best op-
timizer can guarantee the optimal value with fast learning and obtain more reliable per-
formance. We briefly explain two optimization algorithms used in our experiments as
follows.

Stochastic Gradient Descent (SGD). One of the most popular optimization algorithms is
the SGD algorithm. In the SGD optimizer, the algorithm allows updating the parameter
until it converges to the minimum and enables moving to the better local minima [29].
The SGD optimizer can be computed as

0=0—n-Vel (0275 (1)

where 6 is objective function, 7 is learning rate, § = 6 — n - VoJ (0; 2%; j*) updates the
parameters of the objective function, and a2, j¢ are training example and label.
RMSProp. Hinton et al. [30] invented a mini-batch version of the RProp algorithm,
namely the RMSProp algorithm. The RMSProp algorithm is the adaptive learning rate
method. It uses the sign gradient to calculate and update the value of the learning rate
[29].
Opp1 = 0; — Lgt
Elg?l: +e (2)

Elg’]e = vE[g%]e-1 + (L —7) g7
where E[¢?]; = vE[¢%]i-1 + (1 —7)¢? is squared gradients for each weight, g; is the

gradient of the cost function, and v is a decay constant. Note that the best values of
decay constant and learning rate are 0.9 and 0.001 [28, 29].

3.2. Ensemble methods. In this section, the idea of the ensemble method combines
with several weights (see Figure 1) that are learned from the CNN models to generate the
optimal predictive model. In this section, we mainly emphasize three ensemble methods
as follows.

3.2.1. Unweighted average. The most common of the ensemble methods is the unweighted
average method. In this method, first, the probability values (w1, ws, ..., w,), which is the
output of the last layer of the CNN models, are calculated using the softmax activation
function [31]. Second, we average all the probability values of the CNN models and select
the highest probability as a result. The unweighted average method is computed as p’ =
%Z?:l i/, where 7/ is the weight vector and n is the number of ensemble CNN models.
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3.2.2. Unweighted magority vote. In this method, instead of averaging all the probability
values of the CNN models, the highest probabilities are selected as the output. Then, it
votes by counting the majority from all the predicted labels and makes a final decision
[32]. The unweighted majority vote method is calculated as p' = 13"  argmax (),
where arg max (%) is the highest probability value of weight vector % and n is the number
of ensemble CNN models.

3.2.3. Weighted average. The weighted average method is the extended version of the
unweighted average by multiplying the different weight values to the CNN outputs [32].
Additionally, the sum of weight values is equal to one. The equation of the weighted
average method is given by p' = %Z?zl a,;y, where « is the weight values that multiply
with the weight vector i and n is the number of ensemble CNN models.

4. Plant Leaf Datasets. In the section, we introduce the benchmark mulberry leaf
dataset. We collected mulberry leaves that grow in Thailand. In this dataset, the mul-
berry leaf images are diverse in brightness, shadow, and even camera angles because the
mulberry leaf images were captured from the natural environment. We provide the mul-
berry leaf dataset with the aim of the plant leaf recognition. We have also evaluated
the deep learning algorithms for the tomato and corn leaf disease datasets classification,
which is the subset of the PlantVillage dataset.

4.1. Mulberry leaf dataset. The mulberry leaf dataset is a collection of 10 cultivars
that are taken in the natural environments using DSLR cameras and smartphones. We
collected the data from three regions of Thailand: northern (Chiang Mai), central (Phit-
sanulok), and northeast (Nakhon Ratchasima, Buriram, and Maha Sarakham).

In this research, the mulberry leaf images were captured from the natural environments,
as shown in Figure 2. We recorded the images from different perspectives. There is a
shadow that appears in the photo when holding the camera at a low position. However,
when shooting from an eye-level position, the resulting image is sharp and the backlit
image does not appear. All leaf images are recorded in the JPEG format. The mulberry
leaf images were resized into 224 x 224 pixel resolution.

The mulberry leaf dataset includes ten cultivars, which are four cultivars from Thailand:
Chiang Mai 60 (386 images), Buriram 60 (500 images), Kamphaeng Saen 42 (640 images),

®) (G) T o O

FIGURE 2. Mlustration of the ten mulberry leaf cultivars including (A) King
Red, (B) King White, (C) Taiwan Maechor, (D) Taiwan Strawberry, (E)
Black Austurkey, (F) Black Australia, (G) Chiang Mai 60, (H) Buriram 60,
(I) Kamphaeng Saen 42, and (J) Mixed Chiang Mai 60+Buriram 60
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and 761 images of mixed-breed mulberry (Chiang Mai 60 + Buriram 60). Three cultivars
of Australia consist of King Red (500 images), King White (350 images), and Black
Australia (637 images). Two cultivars of Taiwan consist of Taiwan Maechor (500 images)
and Taiwan Strawberry (500 images). Also, 488 images of the Black Austurkey are from
Turkey. This dataset contains 5,262 images in total. Note that mulberry experts advised
examination of each mulberry species to label the data and avoid the errors due to the
similarity pattern and shape of the leaves.

4.2. PlantVillage dataset. The PlantVillage dataset is a collection of plant images
proposed by Penn State University [9] that collects various plant leaves and plant leaf
diseases. The PlantVillage dataset has 54,309 images. In our study, we selected only
tomato and corn leaf disease datasets. The detail of these datasets is as follows.

4.2.1. Tomato leaf disease dataset. This dataset consists of 10 categories: nine diseased
tomato leaves and one healthy leaf [17, 33]. It contains 18,162 tomato leaf images, includ-
ing 2,127 Bacterial Spots, 1,000 Early Blights, 1,910 Late Blights, 952 Leaf Mold, 1,771
Septoria Leaf Spot, 1,676 Spider Mites, Two-Spotted Spider Mite, 1,404 Target Spots, 373
Tomato Mosaic Virus, 5,357 Tomato Yellow Leaf Curl Virus, and 1,592 Healthy tomato
leaves. The tomato leaf diseases dataset is shown in Figure 3(A).

4.2.2. Corn leaf disease dataset. This dataset contains four classes and has 3,852 images
[3, 34]. One healthy category has 1,162 images and three corn leaf diseases: 513 images
of Cercospora Leaf Spot Gray Leaf Spot, 1,192 images of Common Rust, and 985 images
of Northern Leaf Blight. The corn leaf disease dataset is illustrated in Figure 3(B).

(A) Tomato leaf disease dataset (B) Corn leaf disease dataset

F1GURE 3. Examples of leaf disease datasets: (A) Tomato leaf images, in-
cluding Bacterial Spot, Early Blight, Late Blight, Leaf Mold, Septoria Leaf
Spot, Spider Mites T'wo-spotted Spider Mite, Target Spot, Tomato Mosa-
ic Virus, Tomato Yellow Leaf Curl Virus, and Healthy, respectively; (B)
corn leaf images, including Cercospora Leaf Spot Gray Leaf Spot, Common
Rust, Northern Leaf Blight, and Healthy (from left to right)

5. Experimental Setup and Results.

5.1. Mulberry leaf dataset. In this experiment, the pre-trained models of five convolu-
tional neural networks (CNNs) consisting of MobileNetV1, MobileNetV2, NASNetMobile,
DenseNet121, and Xception, are used as the initial weight, and then trained on the mul-
berry leaf dataset. The results in Table 1 are based on 5-fold cross-validation to avoid
overfitting and on an independent test set. The training set contains 3,719 images and
the independent test set includes 1,543 images. The experimental settings used to train
the CNN models are as follows: image resolution is 224 x 224 pixels, the three optimiza-
tion algorithms are SGD, Adam, and RMSProp, the learning rate is 0.1, 0.01, 0.001, and
0.0001, the batch size is 8, 16, 32, and 64, and the number of iterations is 500 epochs.
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TABLE 1. The best training hyperparameters and the accuracy (%) of each
single model obtained with 5-fold cross-validation and test set on the mul-
berry leaf dataset

. Learning | Batch Validation Test accurac
Models Optimizer rate & size (%) (%) Y
MobileNetV1 | RMSProp | 0.0001 8 97.35 + 0.005 89.83
MobileNetV2 | RMSProp | 0.0001 16 97.08 4+ 0.006 91.19
NASNetMobile | RMSProp | 0.0001 8 97.38 + 0.004 86.65
DenseNet121 SGD 0.01 8 98.61 + 0.002 90.80
Xception RMSProp | 0.0001 8 97.94 £ 0.006 91.0

For the experimental results, we discovered that the RMSProp optimizer achieved high-
er accuracy when training with MobileNetV1, MobileNetV2, NASNetMobile, and Xcep-
tion models. The SGD optimizer gave better results when training with the DenseNet121.
In contrast, Adam optimizer showed worse performance on all CNN models. The best
parameters for each CNN model are shown in Table 1.

From the results in Table 1, it can be seen that DenseNet121 outperforms other CNN
methods with a cross-validation accuracy of 98.61%. Moreover, MobileNetV2 is the best
CNN model when applied to the test set. The recognition performance of MobileNetV2
is 91.19%, while the worst recognition performance is NASNetMobile. We evaluated the
single CNN model using 5-fold cross-validation on the mulberry dataset to avoid overfit-
ting. The result showed that all CNN models obtained high accuracy and low standard
deviation values. The accuracy of the CNN models was slightly decreased by approxi-
mately 7% on the independent test set. Consequently, it can guarantee that these CNN
models are not overfitted on the tomato and corn leaf disease datasets when using the
same CNN parameters.

In Table 2, we showed the experimental results with the data augmentation techniques
and CNN models on the mulberry dataset. We compared six data augmentation tech-
niques (DA) consisting of DA1 — Height Shift, DA2 — Vertical Flip, DA3 — Fill Mode,
DA4 — Height Shift+Fill Mode, DA5 — Height Shift+Vertical Flip+Fill Mode, and DA6
— Mixed DA. We defined the data augmentation as: Height shift = 0.25, Fill Mode =
Reflect, and Flip Vertical = True. The experiments showed that the best performance is
the Xception model when training the model with three data augmentation techniques
(DA5) (Height Shift, Vertical Flip, and Fill Mode) with the accuracy of 91.77%. Xcep-
tion outperforms every CNN model. Subsequently, the CNN models that obtained high
accuracy when combined with three data augmentation techniques are MobileNetV2, and
NASNetMobile although mobileNetV1 and DenseNet121 models achieved results higher
than 90% when mixed with 10 data augmentation techniques (DAG).

TABLE 2. Performance evaluation of the CNNs and data augmentation
techniques on the mulberry leaf dataset

Data Test accuracy (%)

augmentation | MobileNetV1 | MobileNetV2 | NASNetMobile | DenseNet121 | Xception
DA1 86.58 91.12 88.42 90.03 90.45
DA2 89.31 90.02 88.69 90.01 90.25
DA3 87.49 90.02 88.69 90.01 90.25
DA4 88.20 90.80 88.66 90.47 88.53
DA5 88.85 91.32 90.15 90.67 91.77
DAG6 90.34 84.06 89.63 91.06 84.12
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5.2. Experiments on the tomato and corn leaf datasets. In this section, we com-
pared CNN architectures composed of VGG16, MobileNetV1, MobileNetV2, NASNetMo-
bile, DenseNet121, and Xception to obtain the best performance on the tomato and corn
leaf disease datasets. The best data augmentation techniques that we found from Table 2
are applied to training the CNNs as well. For the leaf (tomato and corn) disease datasets,
we divided 90% of data as a training set and 10% as a test set. The test accuracy is shown
in Tables 3 and 4.

TABLE 3. Performance evaluation of the CNNs on the tomato leaf disease dataset

. Accuracy of data augmentation (%)
Methods Model size No DA DA3 | DA4 T DAE | DAG
VGG16 [17] N/A 99.25 — — - -
MobileNetV1 25.0 MB | 99.26 |99.60 | 99.26 | 99.46 | 99.33
MobileNetV2 179 MB | 99.26 |99.26 | 99.86 | 99.13 | 99.20
NASNetMobile | 37.3 MB | 99.33 | 99.46 | 99.73 | 99.26 | 99.53
DenseNet121 279 MB | 99.46 |99.53|99.87 | 99.53 | 99.66
Xception 159 MB 99.66 |99.73| 99.20 | 99.87 | 99.80

TABLE 4. Performance evaluation of the CNNs on the corn leaf disease dataset

. Accuracy of data augmentation (%

Methods Model size No DA yDA3 DA4g DAE D(A6)
RGB+LinearSVM [34] N/A 88.00 - - - -
BoF+LinearSVM (3] N/A 83.70 - - - -

MobileNetV1 25.0 MB | 97.92 |98.44|99.20 | 98.44 | 99.20

MobileNetV?2 179 MB | 98.18 |97.66 | 99.21 | 97.40 | 98.18

NASNetMobile 37.3 MB | 98.44 |95.83|99.21|98.96 | 99.21

DenseNet121 27.9 MB | 98.44 |98.70|98.70 | 98.70 | 98.96

Xception 159 MB 98.70 | 98.70 | 98.44 | 98.70 | 99.22

From the results in Table 3, it can be seen that Kumar and Vani [17] proposed VGG16
for recognition in the tomato leaf disease dataset and received the accuracy of 99.25%
without applying the data augmentation technique. In these experiments, we considered
training the CNN models applying the data augmentation and without applying the data
augmentation techniques. The results showed that the DenseNet121 and Xception using
data augmentation surpassed all CNN models with an accuracy of 99.87%.

As seen in Table 4, the accurate results appeared when applying the data augmentation
techniques. It shows that Xception combined with mixed data augmentation techniques
(DAG6) provided an accuracy of 99.22%. Moreover, the MobileNetV2 and NASNetMo-
bile combined with two data augmentation techniques (DA4 — Height Shift+Fill Mode),
and NASNetMobile combined with mixed data augmentation techniques (DAG), provid-
ed an equal accuracy of 99.21%. Furthermore, without applying the data augmentation
technique, CNN architecture still shows a better result than the previous studies with
approximately 10% accuracy.

5.3. Experiments of the ensemble CNN models on the plant leaf datasets. As
can be seen from Table 1, we decided to use three best CNNs to construct the ensemble
CNNs, including Xception, MobileNetV2, and DenseNet121, called 3 Ensemble CNNs
(3-EnsCNNs). We also selected five CNNS (MobileNetV1, MobileNetV2, NASNetMobile,
DenseNet121, and Xception) combined with data augmentation techniques, called 5 En-
semble CNNs (5-EnsCNNs). In these experiments, the outputs after applying the softmax
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function of every single CNN model are then used in the decision layer of the ensemble
method. We use three ensemble methods to recognize the plant leaf datasets, including
the unweighted majority vote, unweighted average, and weighted average methods.

Table 5 shows the results obtained with the ensemble CNNs. For the ensemble methods,
the results emphasize that the weighted average outperforms the unweighted majority
vote and average methods on three plant leaf datasets. Subsequently, the 3-EnsCNNs
perform better than 5-EnsCNNs on tomato and corn leaf disease datasets, except for the
mulberry leaf dataset that obtained the best result when applying 5-EnsCNNs. The data
augmentation techniques, surprisingly, without the data augmentation technique show
the best accuracy on mulberry leaf and corn leaf disease datasets. On the other hand, the
recognition performance with applying the data augmentation technique is 99.93% on the
tomato leaf disease dataset.

TABLE 5. Performance of the ensemble CNN methods applied on plant leaf datasets

Test accuracy (%)
Datasets/DA | Unweighted majority vote Unweighted average Weighted average
3-EnsCNNs | 5-EnsCNNs | 3-EnsCNNs | 5-EnsCNNs | 3-EnsCNNs [ 5-EnsCNNs
Mulberry leaf dataset
No DA 92.81 93.65 94.55 94.68 94.49 94.75
DA 92.61 92.81 94.03 94.23 94.41 94.55
Tomato leaf dataset
No DA 99.20 99.20 99.79 99.86 99.86 99.79
DA 99.26 99.20 99.86 99.79 99.93 99.86
Corn leaf dataset
No DA 98.44 98.70 99.45 99.21 99.47 99.24
DA 98.44 98.70 99.21 99.21 99.31 99.30

As a result, the weighted average ensemble approach also obtained accuracies of 99.93%
and 99.47% on the tomato and corn leaf disease dataset, respectively. The results lead
them to conclude that the ensemble methods can increase the performance of the CNN
architectures.

6. Conclusion. In this paper, we have proposed ensemble convolutional neural network
(CNN) architectures to improve recognition performance on the plant leaf datasets. In
order to obtain the CNN based models, we first compare five state-of-the-art CNNs: Mo-
bileNetV1, MobileNetV2, NASNetMobile, DenseNet121, and Xception. The CNN models
are trained with a transfer learning technique and the training sample enlarged using data
augmentation techniques. We evaluate five CNN models on the mulberry leaf dataset and
two plant leaf disease datasets: tomato and corn. Second, we select the three best CNN
models to establish the ensemble CNNs: Xception, MobileNetV2, and DenseNet121, called
3-EnsCNNs. Additionally, five CNN models: MobileNetV1, MobileNetV2, NASNetMo-
bile, DenseNet121, and Xception, are applied as a 5-EnsCNNs. Finally, three ensemble
methods: the unweighted majority vote, unweighted average, and weighted average meth-
ods, are proposed to classify the output of CNN models. Due to the best experiment, the
weighted average method is selected.

With the individual CNN model, the DenseNet121 obtained 98.61% accuracy with
cross-validation and outperformed all models. Additionally, MobileNetV2 showed the
highest performance on the test set of the mulberry leaf dataset with an accuracy of
91.19%. In the best of our experiments, the data augmentation techniques: Height Shift,
Vertical Flip, and Fill Mode, can slightly improve the performance of the CNN models,
especially by significantly increasing the efficiency of the Xception model. The Xception
combined with data augmentation techniques obtained an accuracy of 91.77%. For tomato
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and corn leaf disease datasets, the DenseNet121 and Xception achieved very high accura-
cy above 99%. Our experimental results also obtained high accuracy when compared to
the previous work.

To create a mobile application to address the issue of plant leaf recognition, we rec-
ommend using the CNN models of MobileNetV2, MobileNetV1, DenseNet121, and NAS-
NetMobile, respectively. These CNN models provided accuracy above 99% on the tomato
and corn leaf disease datasets. The size of these CNN models is approximately 25-40 MB,
which is relatively small. In comparison, we recommend using MobileNetV2 for plant leaf
recognition.

As for the ensemble CNN; the experimental results showed that the 3-EnsCNNs achieved
the highest accuracy performance on tomato and corn leaf disease datasets. Moreover,
5-EnsCNNs outperformed 3-EnsCNNs only on the mulberry leaf dataset. Surprisingly,
ensemble CNN without data augmentation techniques obtained the highest accuracy on
two plant leaf datasets: mulberry and corn. However, more than 99% accuracy was ob-
tained from the tomato and corn leaf disease datasets. The highest accuracy of 94.75%
was obtained with the mulberry leaf dataset because the tomato and corn leaf disease
images contain only one leaf in the image (see Figure 3) while the mulberry leaf images
were taken from the natural environment with different perspectives, sunlight conditions,
and several leaves appear in the image (Figure 2).

There is still a deficiency in improving the accuracy of the mulberry leaf dataset be-
cause the ensemble CNN method achieved only 94.75% accuracy. In future work, we plan
to work on other data augmentation techniques such as generative adversarial networks
(GAN) [35], AutoAugment [36], and sample paring [37] methods. Another direction for
future work is designing new ensemble CNNs. And bio-inspired algorithms, such as an
artificial bee colony, bat algorithm, particle swarm optimization, and ant colony optimiza-
tion will be employed to optimize the weight of the ensemble method [38, 39].
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