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Abstract. Estimation of fishing efforts is the key metric for sustainable ocean manage-
ment. Previous studies have been proposed to detect fishing activities based on analysis of
vessel trajectory from Vessel Monitoring System (VMS). However, identification of fish-
ing activity without prior knowledge related to fishing gears may cause detection failure
because individual gears of fishing possess specific movement patterns. It is desirable to
identify vessel movements made by different fishing gears for accurately detecting fish-
ing events. In this work, we propose a novel method that recognizes a VMS trajectory
corresponding to fishing gear types by encoding sequences of GPS points with Recurrent
Neural Networks (RNNs). Firstly, we segment a route trajectory using an unsupervised
segmentation scheme. After that, each extracted segment is encoded into a semantic
space to train a neural network model for identifying a fishing ship of a specific gear.
We also demonstrate that RNNs with feature embedding can leverage the discriminative
power of classifier. We conduct experiments on real trajectory data of three fishing gear
types, including trawl, purse-seine and falling net, collected from a VMS database of the
Thailand Command Center for Combating Illegal Fishing (CCCIF). Our experimental
results demonstrate embedded bidirectional gate recurrent units achieves over 90% clas-
sification accuracy compared with state-of-the-art methods and other RNN models.
Keywords: Fishing gear detection, VMS, Trajectory classification, RNN

1. Introduction. Fishiers managers are typical to assess fish populations by areas for
sustainable management decisions. In such cases, fishing efforts are often estimated by
using logbook data recorded by fishers. However, this method tends to underestimate the
population sizes [1]. It is desirable to identify an effective method to detect fishing activ-
ities related to individual vessels. Among remote-sensing technologies, Vessel Monitoring
System (VMS) that uses satellite communication becomes a standard tool of fisheries mon-
itoring and surveillance [2]. VMS data allow to track events related to a fishing trip by
recording information, including GPS positions (latitude/longitude), speed over ground
and course over ground. In VMS, a GPS tracker is deployed on a fishing ship to transmit
information to vessel operators in time intervals. For many years, previous studies utilize
the VMS data for fishing studies. For example, some studies use the ship tracking data
to compute fishing metrics such as fishing diversity [2] and fishing intensity [3]. Many
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of them have also proposed to detect fishing activities made by a vessel [4-6]. However,
these studies tend to be impractical for two reasons. Firstly, these studies are solely de-
signed to detect fishing events related to specific fishing gears. Secondly, identification
of fishing activity without knowing fishing gear types can result in inaccurate detection
because different fishing gear types have different movement patterns. Because VMS data
provide information on the movement of fishing vessels, previous studies were proposed
to utilize the GPS tracking data to characterize fishing gears. [6] focused on fishing ship
speeds from the VMS data as the main indicator for fishing gear type identification. More
sophisticated approaches that use machine learning schemes have also been proposed to
characterize movement patterns of fishing gears. [7] proposed a Gaussian mixture model
to encode data points from different types of gear. After that, support vector machine
is applied to differentiating four fishing gear types: trawl net, longline net, pole net and
purse-seine net. The recent study [8] proposed to produce specific profiles of fishing gear
types based on velocity. Feature selction and XGBoost are then employed to classify
fishing gear types based on their profile. A probabilistic model that uses spatio-temporal
information (i.e., days, months, weather, fishing hours and X-Y regions) [9] was proposed
to identify fishing gear types. Recently, [10] proposed a Recurrent Neural Network (RNN)
model [11,12] which focuses on extracting sequential patterns of ship trajectory to discrim-
inate some fishing gear types. According to experimental results, their method achieved
89.7% classification accuracy. Nevertheless, we believe that the accuracy may be limited
by intrinsically meaningless points tracked in VMS and complicated dynamic patterns in
trajectories of fishing gear types.
Motivated by the above challenges, we propose an RNN-based method to enhance the

accuracy of fishing gear type identification. Our proposed method, at the first step, ex-
tracts a single route trajectory from VMS data using an unsupervised segmentation strate-
gy. Furthermore, Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
[15] with adaptive parameters is adopted to identify meaningful data points capturing
specific movements of fishing ships from VMS data. We then extract various features of
each point segment and encode these features into a low-dimensional embedding space
to improve RNN training for the detection of specific fishing gears. Experimental results
conducted on real-world VMS data of trawl, purse-seine and falling net gears have shown
that the proposed RNN-based models achieve encouraging performance.
The main contributions of our study are summarized as follows.

• We propose an RNN-based method for fishing gear type identification which uses
VMS data.

• We demonstrate that RNN models with an embedding space achieve improved accu-
racy of recognition for trawl, purse-seine and falling net vessel trajectories compared
with state-of-the-art approaches.

• We carry out experiments to evaluate the effectiveness of the proposed models on
real-world vessel movement data in Thailand.

2. Preliminaries.

2.1. VMS trajectory. VMS originally records information about a vessel’s identity,
location and activity in time intervals. Table 1 shows VMS samples (points) of vessel’s
events [2]. Each VMS record consists of vessel’s ID number, status of ship movement,
date/time, Speed over Ground (SoG), distance from last move status, latitude/longitude
and Course over Ground (CoG). In this work, we focus on identifying VMS data of three
fishing gear types: trawl, purse-seine and falling net. Table 2 and Figure 1 show different
characteristics of each of the gear types. Trawlers involve fishing with pulling the net
through the water behind a fishing vessel. Fishing with purse-seine gear catches the prey
by quickly encircling the net with high speeds. Falling net gear is primarily designed to
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Table 1. Samples of VMS data

Fishing ID Date/Time SoG Distances Latitudes Longitudes CoG
A0004 4/1/2016, 0:34:27 0.54 0 11.3169 102.4657 300
A0004 4/1/2016, 1:32:27 2.16 0.07 11.3179 102.6451 270
A0004 4/1/2016, 2:32:27 0.00 1.74 11.2964 102.4807 315

Table 2. Summary of fishing vessel behavior

Gear types Descriptions
Speed
(knots)

Time
(h)

Trawl
Catch the prey by dragging a net through the
water behind a boat

3-6 2-5

Purse-seine
Catch the prey by quickly encircling the net with
high speeds

0-2.5 2

Falling net Catch prey by clapping down the prey 1 8

(a) (b) (c)

Figure 1. VMS gear tracks of (a) trawl, (b) purse-seine and (c) falling net

catch prey in shallow water. While operating, the vessel falls the net to capture the prey
from above.

2.2. Density Based Spatial Clustering of Applications with Noise (DBSCAN).
DBSCAN [15] is a density-based clustering method. DBSCAN is an important and widely
used algorithm for group identification in spatial databases [16,17] because it can detect
arbitrary shaped clusters. Given a set of objects (points), DBSCAN marks points as
core if they are close to each other within a given radius and more than a minimum
number of points required for a cluster. If points within the radius are less than the
minimum number of points required, then they are marked as border; otherwise, they are
assigned as outlier (noise). Finally, clusters are formed by differentiating between points
marked as border and noise. Despite this, the main drawback when applying classical
DBSCAN to vessel trajectory segmentation is meaningless results generated by grouping
spatial-temporal GPS points [18]. In this paper, a modified DBSCAN based segmentation
algorithm of VMS trajectory data is presented.

2.3. Recurrent Neural Networks (RNNs). RNN [11,12] is a category of neural net-
works designed for modelling sequential data and has success in recent applications such
as stock price prediction [13] and network protocol prediction [14]. Unlike standard feed-
forward neural networks, RNNs employ recurrent layers to capture temporal dependencies
among time steps defined by

ht = σ(Wxhxt +Whhht−1 + bh) (1)

yt = σ(Whyht−1 + by) (2)
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where yt and ht are the output state and the hidden state at time step t. Wxh, Whh, Why

denote weight metrics of each unit. bh, by are bias terms and σ is the logistic sigmoid
function with an output in [0, 1]. Long Short-Term Memory (LSTM) networks [11] were
proposed to address the gradient vanishing problem in RNNs. It has several gates that
enables to learn which information can keep or throw away. For many years, there is a
variant of LSTM architecture while many experiments have reported that Gated Recurrent
Unit (GRU) [12] well performs for trajectory classification. GRU is formally defined by

rt = σ(Wxrxt +Whrht−1 + b) (3)

zt = σ(Wxzxt +Whzht−1 + b) (4)

h̃t = σ(Wxxt +Wh(rt ⊙ ht−1)) (5)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (6)

where rt, zt denote the reset and update gates for time step t. h̃t, ht denote the candidate
and the final states at time step t respectively. Wx, Wh denote weight metrics of input
and recurrent layers. ⊙ is the operation of element-wise multiplication. When compared
to LSTM, GRU uses only two gates to replace the forget gate and the input gate, and
does not preserve a memory cell state. This results in the simplified architecture with
fewer parameters that are easy to be optimized.

3. The Proposed Method. As shown in Figure 2, our proposed method is firstly to
acquire data points from each trip of fishing vessel recorded by VMS. After that, the data
points are divided into a sequence of segments by using a trip segmentation algorithm to
capture specific movements of vessel made by fishing gear. We then perform extraction
of various features in each segment and form a feature vector that describes each point
segment. Finally, the embedded RNN, which is trained from training sequences of point
segments, is used for identifying fishing gear patterns.

Figure 2. The proposed method

3.1. Single trip extraction. Many trajectory classification tasks typically divide a tra-
jectory into segments of individual trips. Several methods are used to segment GPS-based
trajectories. Some of them are transition-based method [19], clustering-based method [20],
and window-based method [21]. Because of differentiation of movements in fishing vessels,
we apply DBSCAN, a density-based clustering technique, for trip segmentation. The DB-
SCAN algorithm enables to automatically discover significant clusters based on a notion
of density level. For each data point in a cluster, the neighborhood within a radius ε,
namely Nε, has to contain at least a minimum number of points, i.e., a threshold τ .
However, traditional DBSCAN cannot deal with the complicated issue related to re-

peated visits to a fishing activity location within the same trajectory. Figure 3 depicts
a sample trajectory with a starting point and the end point. With τ = 4, DBSCAN
will assign both P and Q as a core point since there are four points within the radius
ε. However, this leads misinterpretation of the core points. DBSCAN typically lacks a
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Figure 3. The meaningless results in DBSCAN

mechanism to process the temporal sequence of GPS points. To overcome the aforemen-
tioned drawback, we extend DBSCAN by adding a time constraint T . Given pk is a point
taken at time k, during which the distance between pk and any other point taken at time
step t, pt, is less than radius ε, where |t− k| < T . We then define the neighborhood of pk
as

Neighbors(pk) = {pt ∈ P |dist(pk, pt) ≤ ε, |t− k| < T} (7)

As shown in Figure 3, the above rule, Equation (7), is used to ensure that both P and
Q are ruled out owing to the fact that some neighbors do not satisfy the condition. We
also propose a heuristic strategy to determine the appropriate values of ε and τ . Given
a data point, a distance from the point to its nearest neighbor is calculated. After that,
we count each point neighbor. For the radius ε, the distribution of distances from each
point to it nearest neighbor is computed. The value ε can be automatically estimated by
keeping the majority of data points that lies within the ordered distances. The threshold
value τ is determined by using the distribution of counts for each point’s neighbors with
the chosen value ε.

3.2. Trajectory feature extraction. After segmentation, we perform feature extrac-
tion for each point segment. We define that a point segment is represented by a se-
quence of 5 tuple-elements: P = ⟨⟨x1, y1, s1, c1, t1⟩, . . . , ⟨xn, yn, sn, cn, tn⟩⟩ where Pi =
⟨xi, yi, si, ci, ti⟩, xi and yi denote the position of the vessel at time ti, si and ci denote
SoG and CoG at time ti, respectively. The length of segment is denoted as n = |P | and
we, firstly, extract features based on timestamp, including starting hour t1, ending hour
tn and duration of hours, i.e., tn − t1. Secondly, we compute statistical features based
on SoG, including maximum, minimum, average and variance of speeds for the segment.
Besides using SoG, we define structural features based on distance, angles and position,
respectively. As shown in Figure 4, given a segment S = ⟨P1, P2, P3, P4, P5⟩, the total
distance of segment DS is calculated by summing d21, d32, d43, and d54, where each dji
denotes the Euclidean distance between two consecutive points Pi and Pj. We also define
the angle θi as the change of two directions α1 and α2 from two consecutive points Pi−1Pi

and PiPi+1 as follows:

θi =

{
|α2 − α1|, |α2 − α1| < π

2π − |α2 − α1|, otherwise
(8)

As seen in Figure 4, θ1 is calculated by the two directions between P1P2 and P2P3,
respectively. After that, we encode the angles: θ1, θ2, θ3, θ4 and θ5 into the angular
distribution of vessel movement. There are twelve bins of turning angles between two
directions quantized at π

2
radian interval.

We finally incorporate geo-information by using differential longitude and latitude. Dif-
ferential longitude is the difference of absolute longitudes between the current and previous
data points. As shown in Figure 4, the absolute longitudes take from [|lon2 − lon1| , |lon3 −
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Figure 4. Feature representation of point segment

Table 3. Summary of feature descriptors extracted from each trajectory segment

Descriptors
# of

descriptors
Descriptions

Time 3
Starting hour, ending hour and duration of hour in the
segment

SoG 4 Maximum, minimum, average, variance of ship speed

Distance 1
Total distance DS beginning from the start point P1 to the
end point Pn in the segment S

CoG 12 Histogram of twelve angles between two consecutive points
Differential
longitudes

n− 1
List of differential longitude between two consecutive points
|lon2 − lon1| , |lon3 − lon2| , . . . , |lonn − lonn−1|

Differential
latitudes

n− 1
List of differential latitudes between two consecutive points
|lat2 − lat1| , |lat3 − lat2| , . . . , |latn − latn−1|

lon2| , |lon4 − lon3| , |lon5 − lon4|]. Similarly, we transform absolute latitudes into differ-
ential form [|lat2 − lat1| , |lat3 − lat2| , |lat4 − lat3| , |lat5 − lat4|]. Table 3 summarizes fea-
ture descriptors extracted from each point segment. All the extracted features capture
characteristic of fishing gear type.

3.3. Learning embedding space. As mentioned in Section 3.2, the feature vector ex-
tracted from raw VMS data is typically mixed both continuous and categorical values.
Directly using these mixed features to train an RNN model can lead to poor generalization
of classification performance due to overfitting effect. In this work, we develop a semantic
representation of the mixed features to improve performance of RNN for gear trajectory
classification. Inspired by word embedding [19] in Natural Language Processing (NLP),
a word is mapped into a continuous and distributed vector representation that captures
word semantics, resulting in the improved performance of text classification. To end this,
we first convert the continuous features into a one-hot vector that indicates the interval in
which a feature takes its values. After that, we transform the one-hot encoded vector into
the semantic space by using matrix multiplication operation. Let us consider a simple
example of how we calculate the semantic vector. Given f1 = 1.5 and f2 = 2.5 are two
continuous features extracted from a trajectory segment, we convert both features into
the one-hot vectors. Suppose that each of the features has 3 interval classes of value,
including [0.0, 1.0], [1.1, 2.0] and [2.1, 3.0], respectively. As seen in Figure 5, f1 = 1.5,
f2 = 2.5 can be encoded into the one-hot vectors i = [0, 1, 0] and j = [0, 0, 1], respectively.
Given two transform matrices W and U , both i and j are merged into the semantic space
by iW + jU = [w21 + u31, w22 + u32, w23 + u33]. In this way, all the extracted features can
be effectively mapped into a semantic vector space. The transformed matrices can be also
learned through back-propagation while training the RNN model.
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Figure 5. Feature embedding

3.4. Network architecture. Figure 6 illustrates the network architecture of this re-
search. The first layer learns the embedding space that encodes each trajectory segment
P into a semantic vector and then the second layer learns contextual information from
sequence of the extracted segments P (i), where i = 1, 2, . . . , n − k. We use GRU-based
bidirectional RNN architecture to capture bidirectional flows of sequence information.
After that, the state of each GRU unit is concatenated and fed into a max-pooling layer
to reduce the dimensionality. A softmax classifier is learned to predict the appropriate
label to the vessel gear track.

Figure 6. Network architecture

4. Evaluation.

4.1. Data collection. Our experimental dataset consists of 1,049 vessel trajectories of
trawl, purse-seine and falling net originally gathered by VMS between August 2018 and
February 2019. For each trajectory, we perform the following steps. We, firstly, extract
a single round trip while a vessel departs and arrives a port. Secondly, the data points
nearby the harbour are eliminated. Each VMS points outside the harbour are formed
as a route trajectory bounded by a departure and an arrival harbour. After data pre-
processing, we obtain a total number of 1,798 trip trajectories used as the training and
testing data. Table 4 illustrates the dataset descriptions.
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Table 4. Dataset descriptions

Fishing gears #points #routes Percentage
Trawl 224,158 691 38.47%

Purse-seine 193,412 612 34.07%
Falling net 215,080 495 27.45%

4.2. Experimental setting. Truncated backpropagation through time is applied to
training the weights of our proposed network in order to optimize the cross entropy loss
with Adam optimizer [22]. We use the learning rate to 0.002 and the momentum to 0.50.
We also use a validation-based strategy of early stopping to prevent the effects of model’s
overfitting [23]. We have experimented with different network structures and found that
a two-layer network with 50 hidden units achieves the best value in our experiments.
We also discretize each feature into 25 intervals. For temporal segmentation, we employ
ε = 0.05 and τ = 5. To evaluate the performance, we compare our proposed approach to
two candidate models with machine learning scheme and they also use features derived
from pure VMS data.
1) GMM+SVM [7]. This method focuses on extraction of gear-specific mixture models

from speed and tuning-angle distribution of fishing vessels. Such mixture models are used
to derive feature vectors for training SVM classifier. In this experiment, we compute 32-d
feature vector and use four-component mixture models to represent gear trajectory data.
Finally, SVM is trained to characterize fishing gear trajectories.
2) FVID proposed by [8]. The authors extract 61 features related to speed, direction,

location and timestamp from raw VMS data. Then, a feature selection is employed
to identify the sets of candidate features for individual gear types. According to their
experiment, we compute 61 features and perform feature selection to discover a common
feature set for trajectory representation. After that, XGBoost [24] is applied to training
a model of gear trajectory identification.
In this experiment, four classical metrics are chosen to evaluate the model’s effective-

ness, including classification accuracy (Accuracy), Precision, Recall and average F1 score
(F1 score).

4.3. Results. Table 5 demonstrates the performance comparison of all the methods on
the testing data. Overall, our proposed model, bidirectional GRU with feature embedding
(BGRU+FE), achieves an encouraging 96.3% accuracy and outperforms all the existing
baselines, including GMM+SVM and FVID. Compared to GMM+SVM, the improvement
in F1 score is +9.76%, +12.73% and +12.56% for trawl, purse-seine and falling net class-
es respectively. Our proposed model also reveals superior performance over the measures
than FVID that uses XGBoost with single feature selection. These results support supe-
riority of sequence embedding for detecting gear-specific trajectories. Table 6 also shows
the recognition rates per class. As seen in this table, recognition of trawl fishing achieves
the highest precision (97.10%) and recall (98.40%) rates, compared with others. This is
owing to specific movement of trawl vessels. Prediction of purse-seine category performs

Table 5. Performance comparison of the proposed model with different methods

Methods
F1 score

Accuracy
Trawl Purse-seine Falling net Average

BGRU+FE 0.978 0.956 0.941 0.958 0.963
GMM+SVM [7] 0.891 0.848 0.836 0.858 0.862

FVID [8] 0.887 0.832 0.820 0.846 0.850
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Table 6. Recognition rate on different types of gears

Predicted classes
Ground truth

Precision
Trawl Purse-seine Falling net

Trawl 312 6 3 0.971
Purse-seine 2 295 10 0.960
Falling net 3 9 202 0.943
Recall 0.984 0.951 0.939

the second best recognition rate, where 295 out of 310 class samples are obtained. These
experimental results highlight accurate predictions made by RNN.

4.3.1. The effects of RNN architectures. Table 7 shows performance comparisons on di-
fferent RNN architectures. As shown in this table, the bidirectional architectures (i.e.,
BGRU and BLSTM) tend to perform better results than single-directional RNN architec-
tures (i.e., GRU and LSTM) over all the measures. These results highlight the expressive
power of bidirectional RNNs to capture complex relationships among each segment pattern
compared with a single direction RNN architecture. We also compare between BGRU and
BLSTM for fishing gear detection. As seen in this table, BGRU achieves at least +1.2%
absolute improvement in F1 score. These results also highlight the effectiveness of GRU
that is easier to be trained than LSTM due to less parameters.

Table 7. Accuracy on different RNN architectures

Architectures Precision Recall F1 score
GRU 0.926 0.921 0.923
LSTM 0.925 0.907 0.916

Bidirectional GRU (BGRU) 0.958 0.958 0.958
Bidirectional LSTM (BLSTM) 0.950 0.943 0.946

4.3.2. The effect of embedding vector. Figure 7 shows the effect of the bidirectional RNN
architectures on different embedding dimensions. As seen in this figure, the embedded
BGRU achieves the best performance with 30 dimensions and is more stable compared
with embedded BLSTM. This improvement is owing to the fact that the embedded space

Figure 7. Performance results on F1 score varying different embedding sizes
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can capture a highly nonlinear function in the original space while being easier to train the
network model. We believe that the representation learned from the embedding vector
space leverages the predictive power of RNNs for characterizing movement patterns of
fishing gear.

5. Conclusion. A deep learning approach to detecting types of fishing gear from ship
movement data has been proposed in this study. Our approach first deals with the data
quality issue in VMS data records by identifying segments of data points that capture
movement patterns of different gear with the extended DBSCAN. Once the segmentation
was performed, we extract feature vectors of each segment to describe patterns of fishing
gear. Finally, we designed an embedded GRU architecture that encodes a sequence of
feature vectors to characterize fishing gear types. Compared with traditional models, we
demonstrated that the ship tracking data predicted by our proposed approach has the
advantages of high accuracy and stability. This approach helps to reduce the limitations of
human supervision in detection of fishing activity. In the future work, the GRU network
needs to be further optimized to improve precision results on different types of fishing
gear. Moreover, we will work out the method of trajectory segmentation to improve the
model’s accuracy.
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