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Abstract. In port container terminals, loading and unloading are the most important
operations. Their lateness will be costly for both vessel and terminal owners. Moreover,
port operations are many and various, and can be complex as well, since some of them
can be run simultaneously in order to minimize overall operation time. Given the com-
plexity of data obtained from a container terminal, we argue that handling it by means of
a standard regression analysis will prove challenging. Therefore, in this paper, we propose
a completion time prediction method for loading and unloading operations in container
terminals. Specifically, for that purpose, we introduce, herein, adversarial multivariate
regression (AMR) and adversarial multivariate auto-regression (AMAR). Extensive ex-
periments and comparisons revealed that both AMR and AMAR outperform the existing
multivariate regression methods.
Keywords: Regression, Generative adversarial networks, Deep learning, Forecasting,
Container terminal

1. Introduction. In 2017, Shipping Statistics and Market Review (SSMR) reported that
within 15 years, the world merchant fleet’s tonnage has more than doubled [1]. In the
context of such traffic, a port has only limited resources and space for handling of con-
tainers and the related transactions [2]. Therefore, more efficient port operations are
necessary. Loading and unloading operations are the most important in container termi-
nals. Accurate prediction of loading and unloading times is desirable, as it can be helpful
for scheduling, process optimization, and simulation. Note too, that lateness of loading
or unloading operations can incur costly penalties for both vessel and container terminal
owners.

The data generated by a terminal operating system is very complex, since there are
many and complex operations that occur simultaneously. For instance, for vessel stabil-
ity, heavier containers must be put in a lower stack. In contrast, in the storage yard,
heavy containers are commonly positioned in a higher stack, since from there, they can
be loaded first into the vessel’s lower stack(s). Therefore, without good planning, the
operational times of loading and unloading can be unnecessarily time-consuming and ex-
pensive. Note too, that whereas operations can occur simultaneously, there are many
vessels and containers needed to be served while resources are often limited. Given such
conditions, the data generated by terminal operation systems (TOS) can be very complex
and challenging to deal with.

Nowadays, deep learning, since its introduction in [3,4], is showing promising results in
handling of complex problems, and is already widely employed in the industry [2,5], finance
[6,7], and biomedical [8,9] industries. To the best of our knowledge, not many researchers
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have implemented AI or deep learning for container terminal operations. Therefore, in this
paper, we propose adversarial multivariate regression (AMR) and adversarial multivariate
auto-regression (AMAR) which is trained in an adversarial manner for the prediction of
container loading and unloading completion times in container terminals. Both AMAR
and AMR outperform the traditional regression method such as linear, lasso, and ridge
regression. Moreover, they can result in better accuracy than deep neural network which
is not trained in an adversarial manner.
The rest of this paper’s discussion is organized as follows. Section 2 presents related

work. Sections 3 and 4 discuss the proposed method and experimental results, respec-
tively. Finally, Section 5 draws conclusions and looks ahead to future work.

2. Related Work. Several studies related to container terminal operations have been
conducted. Kourounioti et al. predicted the dwell time of containers using artificial neural
networks [10]. For maximization of container terminal productivity, Ahn et al. proposed
coordinated real-time scheduling for optimization of container terminal operations [11].
Luo et al. incorporated particle swarm optimization and a genetic algorithm to optimize
container terminal operations [12]. Kamal et al. transformed categorical data (event-logs)
to the RGB format for prediction of container processing times using PixelCNN [2].
Some researchers have employed adversarial learning to solve regression problems in

various fields. Javanmard et al. provided precise and comprehensive understanding of the
role of adversarial training in the context of linear regression with Gaussian features [13].
Zhang et al. predicted age based on facial images using a conditional adversarial autoen-
coder [14]. Rezagholiradeh and Haidar tried to solve the semi-supervised learning problem
with generative adversarial networks (GANs) for regression [15]. Tong et al. studied the
problem of adversarial linear regression with multiple learners [16]. Unlike the previous
research, in this study, we introduce adversarial learning networks to solve multivariate
regression problems.

3. Method. In this section, the problem definition for container loading and unloading
operations, the proposed model for prediction of container completion time, and the
architecture of our proposed method are defined.

3.1. Problem definition. Container flows from the yard to the vessel and from the
vessel to the yard in a container terminal are depicted in Figure 1. For simplicity, we
merely visualize three-yard bays and one vessel, wherein under real conditions, there
would be many more than three yards in a bay, multiple vessels, and a more complex
yard-bay design. There are three main activities in the loading or unloading operation,
namely, yard activity, movement from the yard to the vessel or from the vessel to the
yard, and vessel-loading/unloading activity. Each activity has a corresponding resource
for its execution. For instance, in the case of loading, yard activity is executed by a yard
crane that picks up the container and puts it on the truck. Then, the truck will move it
to the berthing location. While in the berthing location, the quay crane will pick up the
container and put it in the given position on the vessel.
As shown in Figure 1, given t0, which represents the starting of a corresponding ac-

tivity (yard-crane movement or quay-crane movement for loading and unloading activity,
respectively), we try to predict the completion operation time (tN). For simplicity, we in-
troduce an event as a single loading or unloading operation instance. Therefore, a loading
event consists of yard-crane movement, truck movement, and quay-crane movement; an
unloading event, on the other hand, consists of quay-crane movement, truck movement,
and crane movement.
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Figure 1. Container flows from the yard to vessel and from vessel to yard
for loading and unloading, respectively

3.2. Models. Suppose that x1, x2, . . . , xn represents the attribute of a corresponding con-
tainer, such as container weight, yard-bay number, and yard-tier number, where n repre-
sents the total number of attributes. Given those independent variables, we can predict
y as a dependent variable, y representing the processing time of the corresponding con-
tainer for each activity. We adopt the conditional GAN [17] model to solve multivariate
regression adversarially given the label y, as denoted in Equation (1), where regressor (R)
tries to minimize the error between ŷ and y, given x. Simultaneously, discriminator (D)
tries to maximize the difference between {x, ŷ} and {x, y}.

min
R

max
D

V (D,R) = Ex∼pdata(x,y) [logD ({x, ŷ} , {x, y})]

+Eŷ∼pŷ(ŷ) [log (1−D (R (ŷ|x)))] (1)

The AMR architecture is shown in Figure 2. Our AMR model is like a basic generative
adversarial network (GAN) with a conditional version (CGAN). However, it has different
inputs that are treated to solve a multivariate regression case. In the regressor, we utilize
a deep neural network (DNN) model designed to solve the regression task, while the
discriminator is also a DNN mode, but it is dedicated to distinguishing between the real
(y) and a generated one (ŷ).

Figure 2. AMR architecture

The AMAR model is depicted in Figure 3. Unlike the AMR model, here, the output
consists of three rows in the two-dimensional format representing an event consisting,
for the loading operation, of yard-crane movement, truck movement, and quay-crane
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Figure 3. AMAR architecture

movement, respectively, and vice versa for the unloading operation. There in the AMAR
model, in a single process, we can have three outputs of ŷ: ŷ1, ŷ2, and ŷ3, for the processing
time of yard-crane movement, truck movement, and quay-crane movement, respectively.
We were motivated to use two-dimensional data in order to find the spatial relation among
activities in a single event, while the relations among events can be found in the sequence
data. Therefore, the shuffling data mechanism was not implemented here.

3.3. Architecture. We conducted an extensive experiment to determine the optimal
architectures of AMR and AMAR. The deeper networks were pruned for overfitting and
high computational cost, while the swallower networks were pruned for under-fitting. The
optimal architectures and hyper-parameters of the AMR and AMAR models are provided
in Table 1. Regressor and discriminator networks utilize random normal initializers with a
standard deviation of 0.02. The optimizer for the discriminator is Adam, while RMSprop
is for the regressor networks. The loss function of the discriminator network is binary
cross-entropy, because a discriminator acts as a binary classifier distinguishing between
the real dataset and the fake one; meanwhile, the loss function of the regressor network
is mean square error (MSE). MSE was chosen because our regressor minimizes the errors
of y and ŷ. They are both run for 300 epochs, which takes longer than a standard deep
learning model, since our adversarial learning between two networks is more difficult to
converge.

Table 1. AMR and AMAR architectures

Layer
AMR AMAR

Regressor Discriminator Regressor Discriminator

1

Dense(units = 32) Dense(units = 32)
Conv1D(filters = 64,

kernel size = 3)
Conv1D(filters = 64,

kernel size = 3)
Batch Norm. Batch Norm. Batch Norm. Batch Norm.
Dropout(0.5) Dropout(0.5) Dropout(0.5) Dropout(0.5)

Relu Relu Relu Relu

2

Dense(units = 16) Dense(units = 16) Dense(units = 32) Dense(units = 16)
Batch Norm. Batch Norm. Batch Norm. Batch Norm.
Dropout(0.5) Dropout(0.5) Dropout(0.5) Dropout(0.5)

Relu Relu Relu Relu

3
Dense(units = 1) Dense(units = 5) Dense(units = 3) Dense(units = 3)

Tanh Sigmoid Tanh Sigmoid
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4. Experiments. In this section, we provide the dataset, data pre-processing, results,
and discussion of our research.

4.1. Data pre-processing. The dataset was a one-year recording of loading and un-
loading operations obtained from Busan port, South Korea. It contains 994,416 records,
with the following attributes: container weight, full or empty container (full or empty),
activity name (yard-crane movement, truck movement, quay-crane movement), activity
type (loading or unloading), twin activity (twin or single operation), yard-bay number,
yard-row number, yard-tier number, and processing time for each activity. Some cate-
gorical attributes such as full or empty container, activity name, activity type and twin
activity are converted to dummy variables. The processing time for each activity was
normalized to zero center (−1 to 1). For validation purposes, we split the dataset into
80% training data and 20% testing data.

The correlations between the dependent (processing time) and independent (attributes)
variables are shown in Table 2. Except activity name, all of the attributes have a low
correlation value against the completion time. There are three attributes with negative
correlation values, namely container weight, twin activity and yard-tier number. Based on
the data, the less heavy a container is, the longer its processing time (with low correlation)
is. Accordingly, a full container (0) has a shorter processing time than does an empty
container (1). Activity type represents loading (0) and unloading (1). We can infer that
unloading time is slightly faster than loading time. Twin activity represents a binary
variable: 1 represents a not-twin operation (a single process), while 0 represents a twin
operation. Even though the correlation value is not too high, it can be said that a twin
operation has a shorter completion time. As for yard-tier number, the higher the tier,
the faster the processing time. This is due to the fact that, for a container in a lower tier
(stack), some handling operations will be needed if there are other containers on top of
it.

Table 2. Correlations between processing time and various container attributes

Attribute Correlation
Container weight −0.00215799

Full or empty container 0.000276810
Activity name Significant based on ANOVA test
Activity type 0.000689177
Twin activity −0.00271425

Yard-bay number 0.000300959
Yard-row number 0.000290543
Yard-tier number −0.00013958

4.2. Results and discussion. To assess the robustness of AMR and AMAR, we con-
ducted a comparison with standard regression models including linear regression, lasso
regression, and ridge regression. Further we compared our proposed method with the
DNN model. Root mean squared error (RMSE), mean absolute error (MAE), and mean
absolute percentage error were utilized to evaluate the respective accuracies.

Table 3 shows a comparison between our proposed method and the other regression
methods. We can reveal that a traditional regression method such as linear, lasso or ridge
regression is not able to accurately predict the completion time of a loading or unloading
operation. This is confirmed by Figures 4, 5 and 6. Because the container loading and
unloading dataset is very complex, as shown in Table 2, the correlation between the
independent and dependent variables is very low. In contrast, AMAR outperforms the
other methods in terms of RMSE and MAE. In terms of MAPE, on the other hand,
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Table 3. Error-rate comparison between the proposed method (AMR,
AMAR) and existing regression models

Model RMSE MAE MAPE
Linear regression 4.88332 4.88332 76.03237
Lasso regression 4.88326 3.39685 76.03914
Ridge regression 4.88436 3.39729 75.95312

DNN 3.83464 1.73871 33.27271
AMR 3.78080 1.73694 32.26859

AMAR 3.36037 1.52563 36.54715

Figure 4. Linear regression

Figure 5. Lasso regression

AMR has the most minimum value. The prediction by DNN has a high magnitude value
compared with our AMAR, while AMR has the lowest magnitude as shown in Figures 7,
8, and 9. The reason that our AMAR had a better prediction than AMR is that it can
learn spatial relations inter-event. Note that, in a single input, AMAR contains multiple
multivariate data. Moreover, compared with the DNN, our AMR and AMAR regressor
networks are reinforced by discriminator networks for prediction of ŷ during training.
The convergence of AMR and AMAR is shown in Figures 10 and 11, respectively.

While D1 represents the discriminator against the real dataset, D2 corresponds to the
discriminator against the fake dataset, and R represents the regressor networks. In AMR,



ICIC EXPRESS LETTERS, VOL.15, NO.7, 2021 743

Figure 6. Ridge regression

Figure 7. Deep neural networks (DNN)

Figure 8. AMR

the R converges after 100 epochs, and while the D1 loss is slightly steady after 10 epochs,
it cannot distinguish between the real and the fake dataset. Meanwhile, in AMAR, the
R converges faster after 40 epochs, and D2 and D1 have low values after 10 epochs; how-
ever, whereas D2 has a higher value than does D1, the discriminator has more difficulty
distinguishing the fake dataset from the real one.
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Figure 9. AMAR

Figure 10. AMR convergence during 300 epochs

Figure 11. AMAR convergence during 300 epochs
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5. Conclusions and Future Work. Recently, adversarial learning has been widely
utilized to solve complex problems. In container terminals, predicting completion time
is important for making good scheduling and optimizing the overall operational process.
However, a container terminal has a complex process, since all of the resources have
a conflict of interest in serving both the vessel and hinterland transportation. In this
paper, we proposed an adversarial learning approach to predict the completion time of
the container process. We introduced two models, namely AMR and AMAR. Both of them
outperform the existing multivariate regression methods, including linear regression, ridge
regression, lasso regression, and DNN. In the future, we plan to employ AMR for various
other problems.
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