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Abstract. This study presents a deep learning-based analysis and management method
for Pavement Maintenance System (PMS). Existing systems collect and analyze a variety
of data manually in order to assess the condition of the pavement and develop a main-
tenance plan. However, the manual crack analysis process takes a lot of time, and many
human errors may occur due to the difficulty of objective and correct identification of fine
or small cracks. In the proposed method, a CNN (Convolution Neural Network) is trained
for the classification using pavement analysis information and surface images accumu-
lated in the PMS. A memory efficient architecture SqueezeNet is used as the architecture
of the training model. In addition, the effectiveness of training has been increased by
using various Keras modules. The trained model classifies the images into three classes
depending on the severity of the cracks in the image: no crack, preventive maintenance
needed, and maintenance required. The innovative deep learning-based method proposed
in this paper enables fast and objective road condition evaluation by automating the ex-
isting manual crack analysis process.
Keywords: Pavement crack, Crack severity, Deep learning, CNN

1. Introduction. In general, the life expectancy of the pavement in Korea is expected
to be about 20 years at the time of initial construction. However, the actual repaving
cycle of old roads is 5-10 years. In addition to environmental factors such as increased
traffic and weather, paved roads have a significantly shorter life cycle than expected due to
irregular temporary factors such as vehicle accidents and excavation recovery. In Korea,
the Pavement Management System (PMS) for road management has been introduced
since the 1990s. The PMS uses a mobile scanner (KRISS: Korea Roadway Infrastructure
Survey System) to collect a variety of information, including road facilities, surface images,
and distortions, to investigate, evaluate, and establish repair plans.

However, most crack analysis, including road condition assessment, is performed manu-
ally by human operators. The operator visually inspects the collected images to check the
presence or absence of cracks, and subjectively inputs information on the size and type of
cracks in accordance with established criteria. Then, the PMS analyzes the information
entered by the operator and classifies the road images into three classes depending on the
crack rate in the images: ‘less than 2% – no cracks’, ‘more than 2% and less than 30%
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– preventive maintenance’, and ‘more than 30% – maintenance required’. The operator
analyzes only a few dozen photos per hour, and the accuracy is not that high. Detecting
and classifying types of irregularly shaped cracks with very small size included in high
resolution images is enormously difficult to apply objective criteria.
When training a deep learning model, the deeper the layer of hidden layers, the more

memory is required. However, the road surface image used in this study has a very high
resolution of the raw data. Therefore, in this study, the process of reducing the size of
the image is necessary. However, since the area represented by the crack is very small
compared to the image size, there is a high risk of loss of crack pixels in the process
of reducing the size. We minimized the loss of the crack area by using an appropriate
interpolation method; thus, we were able to train a deep learning model to classify small
cracks.
With this background, this paper discusses how to train objective road crack severity

classification model using CNN for image classification and historical data accumulated
in the PMS. We trained the model to classify road images based on the data accumulated
in the PMS, and propose a classification model that can replace the manual process of
the existing PMS.
The PMS has been operating continuously since the 1990s, according to the network,

project and research levels shown in [1]. Road information, which is the source of mainte-
nance, uses the mobile dedicated equipment in [2] and is systematically managed according
to the basic components of the PMS shown in [3]. However, the PMS currently contains
manual processes that cause problems in many respects.
Various methodologies using image processing techniques have been proposed to detect

cracks in pavement images. [4] applied a block-wise grid to the road images to classify
the crack and non-crack regions by the pixel values contained in each block. [5] used
the Gabor filter to detect the edge of an object and recognized the crack based on the
filter’s response and the gradient variation of the contrast. [6] identified crack regions by
preprocessing the surrounding area with respect to the center point and characterizing
the connectivity of the threshold pixels. Most studies assume that the noise contained in
the image is not severe and the difference between crack and non-crack is obvious. Unlike
previous studies, there are various difficulties in learning the classification model of road
surface images used in this study. [7] described such difficulties and conducted a study
on image processing methodology to increase the effectiveness of machine learning model
learning.
The remainder of this paper is organized as follows. Section 2 presents the framework for

training pavement crack classification model. Section 3 proposes a preprocessing method
for the preparation of data to be used for training the classification model, and Section 4
describes the model training process. Finally, Section 5 offers conclusions of this study.

2. Framework. The proposed framework is shown in Figure 1. First, we assigned labels
for each crack severity level based on the images and road information stored in the past
PMS. However, data accumulated in the PMS contains unnecessary information such as
survey time, investigator, road name, area, road distortion, and road parallelism, as well
as crack information. For model training, only information related to cracks should be
extracted, evaluated, and labeled accordingly in order to classify the cracks in the images.
In addition, each road image needs to be scaled down for training the CNN model because
of its high resolution of 10000 ∗ 3739. Appropriate resizing methods are needed to avoid
losing small crack information in the image. The resized images and the corresponding
label data are split into training and validation set. The training set is used for training the
CNN classification model, and the classification performance is evaluated with validation
accuracy using the validation set.
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Figure 1. Framework for training pavement crack classification model

Table 1. Crack severity classification criteria

The value ranges of crack rate Maintenance required classes
0∼2 No cracks
2∼30 Preventive maintenance needed
30∼ Maintenance required

3. Data Preparation. Past road information is stored in the form of a two-dimensional
table. There are 8 variables related to crack, which are the comprehensive indicators:
amount of crack, rate of crack, and amount of crack of each crack type (6 types). Using
the extracted crack-related information, the labels of ‘no cracks’, ‘preventive maintenance
needed’ and ‘maintenance required’ are assigned by applying the actual PMS severity
criteria.

The rate of crack and the amount of crack are comprehensive metrics for six types of
cracks. It is weighted and summed with different weights depending on the type, and
finally, maintenance needs are classified according to the rate of crack. Table 1 shows
the level of maintenance required according to the crack rate, and the image is labeled to
learn the 3 classes in the table as output classes of the deep learning model.
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A high-resolution image with approximately 38 million pixels of size 10000∗3739 must be
scaled down for the deep neural network training. Depending on the input image and the
structure of the neural network, the memory required for training increases exponentially.
We scaled down an image of 38 million pixels with a resolution of 10000 ∗ 3739 to 100000
pixels’ image with a resolution of 500 ∗ 200. That is, the raw image was reduced to a
ratio of 1 in 374. However, it is necessary to adopt an appropriate interpolation method
to preserve crack pixels appearing in small areas. Figure 2 shows the result of applying
different interpolation methods to a crack image. Of the six interpolation methods applied,
the Area interpolation method, unlike other linear interpolation methods, handles noise
on asphalt surfaces while preserving fine cracks.

Figure 2. Crack region of reduced image with interpolation methods

4. Training and Learning Results. This section presents the model training for the
classification by crack severity and analyzes the learning results. We used SqueezeNet, a
low-memory CNN architecture developed in July 2016, and tuned for the purpose of this
research. SqueezeNet delivers classifying performance similar to AlexNet and can save 50
times the memory required [8]. Considering the possibility of using small devices such as
mobile devices in the future, we performed model training using low memory architecture.
Table 2 details the CNN architecture tuned for this study.
In addition, we used Keras’ callback classes, EarlyStopping and ReduceLROnPlateau,

for the effectiveness of the model training. They operate on a loss function, each of which
enables pre-termination and adjusts the learning rate for the epoch of learning that tends
to overfit.
Table 2 shows a SqueezeNet-based modified model used in the study. The input layer

and output layer were modified according to the image size and classes used in this study.
The Conv layer extracts the features of a region by convolutional operation, and the
Maxpool layer pools the regions in which prominent features appear by considering the
response value of the convolution operation. The Fire layer, the most characteristic layer
of the architecture, allows to maintain accuracy while using fewer parameters of the deep
learning model. The Dropout layer prevents overfitting of the model, and the final class
is classified with Softmax layer.
Table 3 shows the array size of the dataset, which separates 20% for validation from a

total of 6000 images, and the images are grayscale images of channel 1 with a resolution
of 500 ∗ 200. Each image is a one-hot encoded label with one of three labels: ‘no cracks’,
‘preventive maintenance needed’, and ‘maintenance required’.
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Table 2. Details of CNN architecture

Layer Output shape # of parameters
Input 1 (None, 500, 200, 1) −
Conv1 (None, 250, 100, 64) 640

Maxpool1 (None, 124, 49, 64) −
Fire2 (None, 124, 49, 128) 10,368
Fire3 (None, 124, 49, 128) 10,368

Maxpool3 (None, 61, 24, 128) −
Fire4 (None, 61, 24, 256) 41,216
Fire5 (None, 61, 24, 256) 41,216

maxpool5 (None, 30, 11, 256) −
Fire6 (None, 30, 11, 384) 92,544
Fire7 (None, 30, 11, 384) 92,544
Fire8 (None, 30, 11, 512) 164,352
Fire9 (None, 30, 11, 512) 164,352

Fire9 dropout (None, 30, 11, 512)
Conv10 (None, 30, 11, 2) 1,026

Global average pooling2d (None, 3) −
Softmax (None, 3) −

722,370

Table 3. Array shape of training dataset

Training dataset Validation dataset
Image array shape (4800, 500, 200, 1) (1200, 500, 200, 1)
Label array shape (4800, 3) (1200, 3)

Table 4. Hyper-parameters of training model

Loss function Categorical cross-entropy
Optimizer Adam
Metrics Accuracy
Epochs 300

Batch size 32

As shown in Table 4, categorical cross-entropy loss function and Adam optimization
algorithm are used for training. The epochs values in Table 3 are only maximum values
and the values can be pre-terminated less than 300 times depending on the operation of
Keras EarlyStopping.

Figure 3 shows the learning curve for the classification model. Along with learning rate
variation curve, the loss function values and accuracy are shown for each training and
verification data set. Accuracy is not converged up to about 130 epochs, but the effect
of ReduceLROnPlateau reduces the learning rate and prevents overfitting, converging to
77% of accuracy.

5. Conclusions. This paper showed how to transform the manual process of pavement
maintenance management system into a deep learning-based automated classification
model. In the current process, the operator directly examines the image and identify
crack. This causes problems such as time and cost, subjective intervention of workers,
and a high rate of human errors. In order to classify the image by the crack severity level,
the dataset was prepared and the CNN was trained using the stored data of the PMS
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Figure 3. Learning curve of training model

analyzed in the past. As the CNN architecture for training, SqueezeNet was tuned for
the purpose of this study and Keras callback was used for model learning effects. As a
result, the accuracy of the classification model converges to 77.7%.
In the future, the following study will be conducted. Advanced image processing tech-

niques are needed to preserve fine crack pixels lost during image resizing and to enhance
the effectiveness of model training. In addition, an extended research is needed to deter-
mine the exact location and type of cracks. The proposed method in this study classifies
the crack severity of each image, but does not know the location and type of cracks. If
a precise detection of the location and type of cracks included in the image would be
possible, then a more complete management system could be implemented to determine
the crack repair plan.
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