
ICIC Express Letters ICIC International c⃝2021 ISSN 1881-803X
Volume 15, Number 7, July 2021 pp. 763–768

MINIMIZING MAXIMUM COMPLETION TIME IN A NO-WAIT
TWO-STAGE FLEXIBLE FLOW SHOP

Wankyu Ryu1 and Suk-Hun Yoon2,∗

1Department of Industrial Engineering
Seoul National University

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
wankyu84@hotmail.com

2Department of Industrial and Information Systems Engineering
Soongsil University

369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
∗Corresponding author: yoon@ssu.ac.kr

Received November 2020; accepted January 2021

Abstract. In this paper, we consider a no-wait two-stage flexible flow shop scheduling
problem where a single machine is in the first stage and two identical machines in the
second stage. The objective is the minimization of maximum completion time. A mixed
integer linear programming formulation is presented to obtain an optimal solution for
small size problems. A hybrid genetic algorithm (HGA) is proposed for large size prob-
lems. The HGA increases the exploration capabilities of a basic genetic algorithm and
reduces the premature convergence. Extensive computational tests on randomly generated
problems are conducted to evaluate the performance of the HGA.
Keywords: Scheduling, Flexible flow shop, Maximum completion time, No-wait, Mixed
integer linear programming, Genetic algorithms

1. Introduction. Scheduling is a decision-making process that deals with the allocation
of machines (resources) to jobs (tasks) over time to optimize one or more objectives. A
flexible flow shop consists of multiple stages in series with a number of machines in parallel
at each stage. A job has to be processed at each stage only on one of the machines [1].

In no-wait production settings, once the processing of a job begins, subsequent pro-
cessing must be carried out without delays and waiting before or during any operation
[2]. The no-wait flow shop is frequently encountered in some process industries such as
chemical processing, food processing, pharmaceutical, and steel industries [3].

The no-wait flow shop scheduling problem with minimum makespan is strongly NP-hard
when the number of machines is more than two [4]. The computational effort required
to solve an instance of problems grows significantly fast as the number of jobs increases.
Thus, if the number of jobs is large, it is necessary to consider the heuristic and meta-
heuristic approaches [5].

AitZai et al. [6] proposed the branch and bound algorithm and particular swarm op-
timization for the no-wait job shop scheduling problem to minimize the makespan. Al-
lahverdi et al. [7] proposed the block simulated annealing algorithm utilizing block in-
sertion and block exchange operators for the no-wait flow shop scheduling problem with
separate setup times. The objective was to minimize total tardiness with an upper bound
on makespan. Ding et al. [8] addressed the no-wait flow shop scheduling problem with
the makespan criterion. They presented the tabu-mechanism improved iterated greedy
algorithm by utilizing the tabu search strategy. Zhao et al. [9] developed the hybrid
biogeography-based optimization with variable neighborhood search for the no-wait flow

DOI: 10.24507/icicel.15.07.763

763



764 W. RYU AND S.-H. YOON

shop scheduling problem to minimize the makespan. They analyzed the global conver-
gence performance of their algorithm with the Markov model. Koulamas and Kyparisis
[10] considered the no-wait flow shop scheduling problem with rejection. They presented
a third-order polynomial-time dynamic programming algorithm to minimize the sum of
total completion time and total rejection cost with ordered jobs.
Gheisariha et al. [11] addressed the flexible flow shop scheduling problems with sequ-

ence-based setup time, transportation time, and probable rework to minimize both max-
imum completion time and mean tardiness. They proposed an enhanced multi-objective
harmony search algorithm and a Gaussian mutation utilizing response surface methodolo-
gy. Ernst et al. [12] considered a two-stage flexible flow shop where first and second stage
machines formed disjoint pairs with a various buffer size. They developed a polynomial-
time algorithm for the case of equal size buffers and presented two integer linear programs.
Peng et al. [13] studied a two-stage flexible flow shop scheduling to minimize the maximum
completion time. For the problem with a machine at the first stage and two machines at
the second machine, they presented a 2.25-approximation algorithm in O(n log n). Choi
and Lee [14] considered a two-stage flexible flow shop problem with one machine at stage
1 and multiple identical machines at stage 2 to minimize the makespan where the pro-
cessing times of each job at both stages were identical. They described some optimality
conditions and showed the problem to be NP-hard.
Asefi et al. [15] addressed the no-wait k-stage flexible flow shop scheduling problem

to minimize makespan and mean tardiness. They presented the novel hybrid advanced
meta-heuristic algorithm. Abdollahpour and Rezaian [16] studied the no-wait flexible flow
shop scheduling problem with capacitated machines and mixed make-to-order and make-
to-stock production management policy restrictions to the sum of tardiness cost, weighted
earliness cost, weighted rejection cost and weighted incomplete cost. They developed the
cloudy-based simulated annealing and artificial immune system.
This paper presents a methodology based on a genetic algorithm (GA) for a no-wait

two-stage flexible flow shop scheduling problem, in which there is one machine at stage 1
and two identical machines in parallel at stage 2. Once the processing of a job is completed
at stage 1, the job has to be processed on any machine at stage 2 without having to wait.
The objective is to minimize maximum completion time (makespan). The no-wait process
is illustrated by the four-job flexible flow shop where job processing times at stage 1 are all
2 time units and 3, 4, 6 and 7 time units at stage 2 shown in Figure 1. The job sequence is
4-3-2-1 generated by the longest processing time rule at stage 2. If job waiting is allowed,
the job completion time will be 13 time units (schedule 1). As Figure 1(b) shows, when
job waiting is not allowed, the completion time will be 14 time units (schedule 2).
The rest of this paper is organized as follows. In Section 2, the notations and assump-

tions are defined and a mixed integer linear programming (MILP) model for the problem
is provided. Given a job sequence, the MILP can be solved to obtain an optimal solution
in a reasonable time. In Section 3, a hybrid genetic algorithm (HGA) is developed to find
the best solution for large size problems. In Section 4, the results of extensive computa-
tional experiments are provided. The performance of the HGA is compared with that of
the GA. Finally, summary and conclusions are provided in Section 5.

2. Notations and Problem Definition. The following notations will be used through
the paper:
n number of jobs
pij processing time of job j at stage i
Cij completion time of job j at stage i

xj =

{
1 if job j is allocated to machine 1 at stage 2
0 otherwise



ICIC EXPRESS LETTERS, VOL.15, NO.7, 2021 765

(a) Schedule without no-wait (schedule 1)

(b) Schedule with no-wait (schedule 2)

Figure 1. Two schedules for a four-job flexible flow shop

yjl =

{
1 if job j precedes job l at stage 1
0 otherwise

Cmax maximum completion time
M big number
We assume that all jobs are available at time zero. Then the problem can be formulated

by a mixed integer linear programming as follows:

minimize Cmax

s.t. C2j − C1j = p2j, j = 1, . . . , n (1)

C1j +Myjl − C1l ≥ p1j, j, l = 1, . . . , n (2)

C2j +M(2 + yjl − xj − xl)− C2l ≥ p2j, j, l = 1, . . . , n (3)

yjl + ylj = 1, j, l = 1, . . . , n (4)

Cmax − C2j ≥ 0, j = 1, . . . , n (5)

C1j ≥ p1j, j = 1, . . . , n (6)

xj = 0 or 1, j = 1, . . . , n (7)

yjl = 0 or 1, j, l = 1, . . . , n (8)

Constraint set (1) ensures that each job is processed without waiting between stages.
Constraint set (2) establishes that two jobs cannot be processed simultaneously at stage
1. Constraint set (3) assures that two jobs cannot be processed simultaneously on the same
machine at stage 2. Constraint set (4) implies that only permutation schedules can be
considered for an optimal schedule. Constraint set (5) defines the maximum completion
time. Constraint set (6) states that each job is available at time zero. Constraint sets (7)
and (8) insure 0-1 values of variables xj and yjl.

3. Hybrid Genetic Algorithm. Genetic algorithm imitates the evolution of living or-
ganisms in the nature and attempts to find the optimum for some complex problems
in accordance with the principle of survival of the fittest [17]. The GA operates on the
population by applying three main operators to creating the next population from the



766 W. RYU AND S.-H. YOON

current population (a collection of chromosomes): crossover, mutation, and selection at
each step (generation). Each chromosome consists of discrete units called genes. In the
crossover, the genetic information of two parents is combined to explore the design space
and the value of every gene is changed with mutation probability to produce two offspring
(children). Meanwhile, individuals (solutions, candidate or chromosome) are chosen by
a selection operator for the reproduction. The obtained solution is evaluated by the fit-
ness which measures the performance of the chosen individuals compared to the other
whole population. This process continues until a predefined stopping condition is fulfilled
[18-20].
The HGA adopts three basic operators of GAs and combines a pairwise interchange

(PI) to enhance the exploration capabilities of the GA by restraining the premature
convergence. To represent a solution as a chromosome, binary coding for xj and yjl is
used. For example, consider a three-job 2-stage flexible flow shop problem. If the job
sequence at stage 1 is 1-2-3 and jobs 1 and 2 are assigned to machine 1 at stage 2, the
solution can be represented by (x1, x2, x3, y12, y13, y23) = (1, 1, 0, 1, 0, 0).
An initial population is chosen randomly by assigning 0 or 1 to xj and yjl. The makespan

of each chromosome is used as its fitness value. By letting binary variables (xj and yjl)
be 0 or 1, the MILP of the problem reduces to the LP and thus, the makespan can be
obtained in polynomial time. The ratio of the fitness value of each chromosome to the
total fitness value is the probability of the chromosome to be selected in the selection
process.
Unlike many scheduling problems, the problem is represented by binary coding. The

stochastic remainder selection procedure without replacement [21], the single-point cross-
over and the ordinary mutation operator are used for the selection operator, crossover
operator and mutation operator, respectively. In GA, if the fitness values of low fit indi-
viduals are too low compared to those of high fit individuals, the process of the GA tends
to reach a local optimum too early. Hence, to avoid this premature convergence of the
GA, HGA applies a non-adjacent pairwise interchange method to the least fit individual
and increases the competent individuals compared to the dominant individuals. Figure 2
shows the process of the HGA.

Figure 2. HGA cycles



ICIC EXPRESS LETTERS, VOL.15, NO.7, 2021 767

4. Computational Experiments. The MILP and HGA were coded in Visual C++
with CPLEX solver and implemented on Unix platform. Test problems were generated
randomly using the pseudo-random numbers. Processing times were generated according
to the integer uniform distributions provided in [1, 100]. The size of test problems is
defined by the number of jobs (5, 10, 15 and 20). Experiments were composed of two
parts: the preliminary test and main test. In the preliminary test, 10 problems of different
job sizes were solved to find the best parameter set of the HGA. The parameter set
includes population size (Np), number of generations (Ng) and mutation rate (pm). The
computational results of the preliminary test are shown in Table 1. The best result was
obtained with population size of 40, 40 generations and mutation rate of 0.05.

Table 1. Preliminary test results

Np 30 40
Ng 20 30 40 20 30 40
pm 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
5 255 210 299 227 220 210 298 295 227 248 210 217
10 561 537 591 534 537 514 597 561 518 577 554 507
15 792 763 814 788 745 774 781 794 823 779 786 734
20 1,103 948 1,079 1,116 1,046 987 1,085 1,063 1,125 954 993 978

Total 2,711 2,458 2,783 2,665 2,548 2,485 2,761 2,713 2,693 2,558 2,543 2,436

Five test problems of different job sizes were solved by the HGA with the best parameter
set found in the preliminary test. For small size problems (5 and 10 jobs), the results of
HGA were compared with the optimal solutions obtained by the MILP. HGA achieved
optimal solutions for all 10 small size problems.

For large size problems, solving the MILP exactly is not recommendable since large
amount of CPU time and memory are required. The GA solved the large size problems
(15 and 20 jobs). The results of the GA and HGA are shown in Table 2. The HGA provides
7.42% better solutions than the GA on the average, which implies that the HGA helps to
avoid the premature convergence.

Table 2. Results for medium and large size no-wait flexible flow shop problems

No. of GA HGA %Dev
Jobs zg zh (zg − zh/zg)× 100
15 781 738 5.51
20 1,039 942 9.34

5. Conclusions. This paper addressed the problem of minimizing the maximum com-
pletion time in a no-wait 2-stage flexible flow shop with one machine at stage 1 and two
identical machines in parallel at stage 2. We represented the problem as the mixed integer
linear programming formulation to obtain an optimal solution for the small size problems.
For the large size problems, the MILP is not appropriate to be solved since the problem is
NP-hard in the strong sense. Hence, we developed the HGA which lessened the premature
convergence and enhanced the search power. Extensive computational experiments were
conducted to evaluate the performance of HGA.

Modern manufacturing and service industries adopting automation and just-in-time
production systems require the progressive reduction of inventories and improvement of
flexibility. This requirement can be realized by utilizing the concept of no-wait and a series
of duplicate resources (hybrid flow shop). Hence, the problem of this paper can be ap-
plied to various modern production systems. A variety of hybrid metaheuristic algorithms



768 W. RYU AND S.-H. YOON

equipped with a delicate tuning scheme need to be developed particularly for large size
and complex problems. Also, finding effective cuts is essential for the MILP applicable to
various large size problems and fast computing.

REFERENCES

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th Edition, Springer, New York, 2016.
[2] K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling, 2nd Edition, Wiley, New

York, 2019.
[3] H. Ye, W. Li and B. R. Nault, Trade-off balancing between maximum and total completion times for

no-wait flow shop production, International Journal of Production Research, vol.58, no.11, pp.3235-
3251, 2020.

[4] H. Rock, The three-machine no-wait flow shop is NP-complete, Journal of the ACM, vol.31, no.2,
pp.336-345, 1984.

[5] M. Gendreau and J.-Y. Potvin (eds.), Handbook of Metaheuristics, 3rd Edition, Springer, New York,
2018.

[6] A. AitZai, B. Benmedjdoub and M. Boudhar, Branch-and-bound and PSO algorithms for no-wait
job shop scheduling, Journal of Intelligent Manufacturing, vol.27, pp.679-688, 2016.

[7] A. Allahverdi, H. Aydilek and A. Aydilek, No-wait flowshop scheduling problem with separate setup
times to minimize total tardiness subject to makespan, Applied Mathematics and Computation,
vol.365, 2020.

[8] J.-Y. Ding, S. Song, J. N. D. Gupta, R. Zhang, R. Chiong and C. Wu, An improved iterated greedy
algorithm with a tabu-based reconstruction strategy for the no-wait flowshop scheduling problem,
Applied Soft Computing, vol.30, pp.604-613, 2015.

[9] F. Zhao, S. Qina, Y. Zhang, W. Ma, C. Zhang and H. Song, A hybrid biogeography-based optimiza-
tion with variable neighborhood search mechanism for no-wait flow shop scheduling problem, Expert
Systems with Applications, vol.126, pp.321-339, 2019.

[10] C. Koulamas and G. J. Kyparisis, The no-wait flow shop with rejection, International Journal of
Production Research, vol.59, no.6, pp.1852-1859, 2021.

[11] E. Gheisariha, M. Tavana, F. Jolai and M. Rabiee, A simulation-optimization model for solving
flexible flow shop scheduling problems with rework and transportation, Mathematics and Computers
in Simulation, vol.180, pp.152-178, 2021.

[12] A. Ernst, J. Fung, G. Singh and Y. Zinder, Flexible flow shop with dedicated buffers, Discrete
Applied Mathematics, vol.261, pp.148-163, 2019.

[13] A. Peng, L. Liu and W. Lin, Improved approximation algorithms for two-stage flexible flow shop
scheduling, Journal of Combinatorial Optimization, vol.41, pp.28-42, 2021.

[14] B.-C. Choi and K. Lee, Two-stage proportionate flexible flow shop to minimize the makespan, Journal
of Combinatorial Optimization, vol.25, pp.123-134, 2013.

[15] H. Asefi, F. Jolai, M. Rabiee and M. E. T. Araghi, A hybrid NSGA-II and VNS for solving a
bi-objective no-wait flexible flowshop scheduling problem, International Journal of Advanced Man-
ufacturing Technology, vol.75, pp.1017-1033, 2014.

[16] S. Abdollahpour and J. Rezaian, Two new meta-heuristics for no-wait flexible flow shop scheduling
problem with capacitated machines, mixed make-to-order and make-to-stock policy, Soft Computing,
vol.21, pp.3147-3165, 2017.

[17] J. Luan, Z. Yao, F. Zhao and X. Song, A novel method to solve supplier selection problem: Hy-
brid algorithm of genetic algorithm and ant colony optimization, Mathematics and Computers in
Simulation, vol.156, pp.294-309, 2019.

[18] R. Bendaoud, H. Amiry, M. Benhmida, B. Zohal, S. Yadir, S. Bounouar, C. Hajjaj, E. Baghaz and M.
El Aydi, New method for extracting physical parameters of PV generators combining an implemented
genetic algorithm and the simulated annealing algorithm, Solar Energy, vol.194, pp.239-247, 2019.

[19] M. Elhoseny, A. Tharwat and A. E. Hassanien, Bezier curve based path planning in a dynamic field
using modified genetic algorithm, Journal of Computational Science, vol.25, pp.339-350, 2018.

[20] K. M. Hamdia, X. Zhuang and T. Rabczuk, An efficient optimization approach for designing machine
learning models based on genetic algorithm, Neural Computing and Applications, vol.33, pp.1923-
1933, 2021.

[21] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wes-
ley, Reading, 1989.


