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Abstract. In this paper, the relationship between finite memory structure (FMS) smoo-
ther and filter is analyzed. Firstly, the FMS smoother is developed by directly solving an
optimization problem with the unbiasedness constraint using only finite measurements and
inputs on the most recent window. Then, the FMS smoother is shown to be equivalent
to existing FMS filters according to the delay length between the measurement and the
availability of its estimate. Computer simulation results validate the effectiveness of the
FMS smoother and show the relationship between FMS smoother and filter.
Keywords: Finite memory structure smoother, Finite memory structure filter, Finite
impulse response, Filter, Kalman filter, Delay length

1. Introduction. As an alternative to the Kalman filter with the infinite memory struc-
ture [1-4], the finite memory structure (FMS) filter has been developed for the state
estimation and applied successfully for various areas [5-12].

Meanwhile, because the FMS filter is a causal filter providing estimates for states at
given times based only on the relative past, the estimates exhibit a delay. Hence, the FMS
smoother has been developed for estimation problems where there is a fixed delay between
a measurement and the availability of its estimate. FMS smoothers have been derived by
solving diverse optimization problems such as best linear unbiased estimation [13,14], ro-
bust H∞ estimation [15], robust H2 estimation [16], maximum likelihood estimation [17],
information filtering estimation [18], weighted least square estimation [19], and Bayesian
estimation [20]. Although these FMS smoothers have their own unique features, they have
the following common advantages. The smoother generally utilizes more measurement in-
formation than the filter to provide state estimates, which can give more accurate estima-
tion performance than the filter. In addition, since the smoother provides state estimates
at the delayed time using measurement information up to the current time, measurement
information can be reflected in advance in the presence of the state change, which can
give faster convergence than the filter.

In this paper, the relationship between finite memory structure smoother and filter is
analyzed. Firstly, the FMS smoother is developed by directly solving an optimization
problem with the unbiasedness constraint using only finite measurements and inputs on
the most recent window. Then, the FMS smoother is shown to be equivalent to the FMS
filter [11,12], the batch unbiased finite impulse responses (FIR) filter [6], and the backward
FMS filter [5] according to the delay length between the measurement and the availability
of its estimate. Computer simulation results for a noisy sinusoidal signal model validate
the effectiveness of the FMS smoother and show the relationship between FMS smoother
and filter.
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This paper has the following structure. In Section 2, a discrete-time FMS smoother is
developed. In Section 3, the FMS smoother is shown to be equivalent to existing FMS
filters. In Section 4, computer simulations are performed. Then, concluding remarks are
given in Section 5.

2. Discrete-Time FMS Smoother. The discrete-time state-space model with control
input ui can be represented by

xi+1 = Axi +Bu+Gwi,

zi = Cxi + vi, (1)

where xi is the state, and zi is the measurement. The initial state x̂i0 is a random variable
with a mean x̄i0 and a covariance Σi0 . The system noise wi and the measurement noise
vi are zero-mean white Gaussian whose covariances Q and R are assumed to be positive
definite matrix.
FMS smoothers have been derived by solving diverse optimization problems [13-20].

Among them, in this section, the FMS smoother to estimate the state xi−d at the lagged
time i−d is developed by directly solving an optimization problem with the unbiasedness
constraint using only finite measurements and inputs on the most recent window [i−M, i].
The lagged time i − d means there is a fixed delay between the measurement and the
availability of its estimate. The positive integer d is the delay length satisfying 0 ≤ d < M
and equal to the number of discrete time steps between the lagged time i−d at which the
state is to be estimated and the current time i of the last measurement used in estimating
it. The window initial time i −M will be denoted by iM hereafter for simplicity. Finite
measurements and inputs on the most recent window [iM , i] are denoted by Zi and Ui,
respectively, and represented by

Zi
△
=

[
zTiM zTiM+1 · · · zTi−1

]T
,

Ui
△
=

[
uT
iM

uT
iM+1 · · ·uT

i−1

]T
.

Using Zi and Ui, the discrete-time state-space model (1) can be represented in the follow-
ing regression form

Zi − Ξ̄Ui = Γ̄xiM + Λ̄Wi + Vi, (2)

where Wi and Vi have the same form as (2) for wi, vi, respectively, and matrices Γ̄, Ξ̄, Λ̄
are as follows:

Γ̄
△
=


C
CA
...

CAM−2

CAM−1

 ,

Ξ̄
△
=


0 0 · · · 0 0

CB 0 · · · 0 0
...

...
...

...
...

CAM−3B CAM−4B · · · 0 0

CAM−2B CAM−3B · · · CB 0

 ,

Λ̄
△
=


0 0 · · · 0 0

CG 0 · · · 0 0
...

...
...

...
...

CAM−3G CAM−4G · · · 0 0

CAM−2G CAM−3G · · · CG 0

 .
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From the discrete-time state-space model (1), the state xi−d at the lagged time i− d is
represented by

xi−d = AM−dxiM + Ξ̃Ui + Λ̃Wi, (3)

where

Ξ̃
△
=

AM−d−1B · · · AB B

d︷ ︸︸ ︷
0 0 · · · 0

 ,

Λ̃
△
=

AM−d−1G · · · AG G

d︷ ︸︸ ︷
0 0 · · · 0

 . (4)

Therefore, using (3), the regression form (2) can be expressed in terms with xi−d at the
lagged time i− d as follows:

Zi − ΞUi = Γxi−d + ΛWi + Vi, (5)

where

Γ
△
= Γ̄A−(M−d), Λ

△
= Λ̄− Γ̄A−(M−d)Λ̃, Ξ

△
= Ξ̄− Γ̄A−(M−d)Ξ̃. (6)

The noise term ΛWi + Vi in (5) is zero-mean white Gaussian with covariance Π given by

Π
△
= Λ

diag( M︷ ︸︸ ︷
Q Q · · · Q Q)

ΛT +

diag( M︷ ︸︸ ︷
R R · · · R R)

 ,

where diag(Q Q · · · Q Q) and diag(R R · · · R R) denote block-diagonal matrices with
M elements of Q and R, respectively.

The FMS smoother is developed from best linear unbiased estimation approach in [21].
The FMS smoother x̂i−d is assumed to be obtained from only finite measurements Zi and
inputs Ui on the most recent window [iM , i] as follows:

x̂i−d
△
= H(Zi − ΞUi), (7)

where H is the gain matrix. Taking the expectation of both sides of (7), the following
relation is obtained:

E [x̂i−d] = E [H(Zi − ΞUi)] = HΓE [xi−d],

where E [x] denotes the expectation of x. Then, with the following constraint:

HΓ = I, (8)

x̂i−d is unbiased, i.e., E [x̂i−d] = E [xi−d]. Thus, the constraint (8) can be called the unbi-
asedness constraint for the FMS smoother x̂i−d.

The objective is now to obtain the gain matrix H∗, subject to the unbiasedness con-
straint (8), in such a way that the error of x̂i−d has a minimum variance as follows:

H∗ = argmin
H

E
[
(xi−d − x̂i−d)

T (xi−d − x̂i−d)
]
. (9)

Using the approach of best linear unbiased estimation in [21], the FMS smoother x̂i−d is
obtained by the solution of (9) as follows:

x̂i−d = H(Zi − ΞUi), (10)

where
H =

(
ΓTΠ−1Γ

)−1
ΓTΠ−1.

The FMS smoother x̂i−d (10) has several inherent properties such as unbiasedness,
deadbeat, time-invariance and robustness as follows. The unbiasedness of the state es-
timate means that its mean value tracks the mean value of the state at every time for
noisy systems. The deadbeat of the estimate means that its value tracks exactly the state
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at every time for noise-free systems. This deadbeat property indicates finite convergence
time and fast tracking ability of the FMS smoother. Thus, it can be expected that the
FMS smoother would be appropriate for fast estimation and detection of signals with un-
known times of occurrence. In addition, as shown in (10), the gain matrix H for the FMS
smoother requires computation only on the interval [0,M ] once and is time-invariant for
all windows. The on-line computation of the FMS smoother requires only filter updates.
Hence, the computational complexity of the FMS smoother is O(M) and thus linear in
the size of the window length M . In practice, this means that quite a large M can be
chosen without worrying about computational burden. In addition, unlike the fixed-lag
Kalman smoother, the FMS smoother does not need the combining of two algorithms
for before and after estimated time i − d, the memory requirement for the save of inter-
mediate values, and the initialization algorithm. Moreover, the FMS smoother might be
robust against temporary uncertainties such as model uncertainty, unknown input, and
incomplete measurement, due to its finite memory structure. This intrinsic robustness
will be verified later through extensive computer simulations.

3. Relationship between Finite Memory Structure Smoother and Filter. In this
section, according to the delay length d between the measurement and the availability of its
estimate, the FMS smoother is shown to be equivalent to existing FMS filters [5,6,11,12].

3.1. When there is no delay. When there is no delay, that is d = 0, matrices of (4)
become

Ξ̃ =
[
AM−1B AM−2B · · · AB B

]
,

Λ̃ =
[
AM−1G AM−2G · · · AG G

]
, (11)

and thus matrices of (6) become

Γ = Γ̄A−M =


CA−M

CA−M+1

...
CA−2

CA−1


△
= Γ̌,

Λ = Λ̄− Γ̄A−M Λ̃ = −


CA−1G CA−2G · · · CA−MG

0 CA−1G · · · CA−M+1G
...

... · · · ...
0 0 · · · CA−2G

0 0 · · · CA−1G


△
= Λ̌,

Ξ = Ξ̄− Γ̄A−M Ξ̃ = −


CA−1B CA−2B · · · CA−MB

0 CA−1B · · · CA−M+1B
...

... · · · ...
0 0 · · · CA−2B

0 0 · · · CA−1B


△
= Ξ̌. (12)

Then, the FMS smoother (10) with d = 0 can be represented by

x̂i =
(
Γ̌T Π̌−1Γ̌

)−1
Γ̌TΠ−1

(
Zi − Ξ̌Ui

)
(13)

with matrices (12) and

Π̌
△
= Λ̌

diag( M︷ ︸︸ ︷
Q Q · · · Q Q)

 Λ̌T +

diag( M︷ ︸︸ ︷
R R · · · R R)

 .
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Therefore, the FMS smoother (13) with d = 0 is equivalent to the existing FMS filter
[11,12].

3.2. When there is no delay and the covariance of the noise term has an identity
matrix. When there is no delay, that is d = 0, and the covariance Π of the noise term
ΛWi + Vi in (5) has an identity matrix, that is Π = I, the FMS smoother (10) can be
represented by

x̂i =
(
Γ̌T Γ̌

)−1
Γ̌T

(
Zi − Ξ̌Ui

)
. (14)

Thus, the FMS smoother with d = 0 and Π = I is shown to be equivalent to the existing
batch unbiased FIR filter [6].

3.3. When the delay length is the same with the window length. When the delay
length is the same with the window length, that is d = M , matrices of (4) become

Ξ̃ =

 d︷ ︸︸ ︷
0 0 · · · 0 0

 , Λ̃ =

 d︷ ︸︸ ︷
0 0 · · · 0 0

 , (15)

and thus matrices of (6) become

Γ = Γ̄, Λ = Λ̄, Ξ = Ξ̄. (16)

Then, the FMS smoother with d = M can be represented by

x̂i−M =
(
Γ̄T Π̄−1Γ̄

)−1
Γ̄T Π̄−1

(
Zi − Ξ̄Ui

)
, (17)

with matrices (16) and

Π̄
△
= Λ̄

diag( M︷ ︸︸ ︷
Q Q · · · Q Q)

 Λ̄T +

diag( M︷ ︸︸ ︷
R R · · · R R)

 .

Therefore, the FMS smoother (17) with d = M is equivalent to the existing backward
FMS filter [5].

4. Computer Simulations for Sinusoidal Signal Model. In this section, the FMS
smoother is applied for the noisy sinusoidal signal model through computer simulations.
In order to verify intrinsic robustness property of the FMS smoother, the noisy sinusoidal
signal model is assumed to have a temporary model uncertainty as follows:

A =

[
cos(π/32) + δi sin(π/32)
− sin(π/32) cos(π/32) + δi

]
,

G =

[
1
1

]
, C =

[
cos(π/4) + 0.2δi 0.2δi

]
, (18)

where the uncertain model parameter δi is taken by

δi =

{
0.08 if 100 ≤ i ≤ 150,

0 otherwise.

The system noise covariance and the measurement noise covariance are taken byQ = 0.052

and R = 0.052, respectively. The FMS smoother with M = 15 and d = 3, the FMS filter
with M = 15 and the Kalman filter are compared. Although three filters are computed by
the discrete-time state-space model (1) without the consideration of the temporary model
uncertainty, actual measurements and inputs for these estimation filters are obtained from
the actual system with the temporary model uncertainty (18). To make a clearer com-
parison of estimation performances, simulations of 20 runs are performed using different
system and observation noises, and each single simulation run lasts 500 samples.
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Figure 1 shows root mean square (RMS) estimation errors of the 1st state for 20 simu-
lations and also shows estimation errors for one of 20 simulations. Even if the sinusoidal
signal model is accurately represented in state-space model on a long time scale, unpre-
dictable changes such as frequency, phase, and speed jumps can occur. This effect is called
temporary uncertainties because it generally occurs in the short term. There can be a
model uncertainty, an unknown input, and incomplete measurement information, etc., as
representative temporary uncertainties. In simulations, the model uncertainty is consid-
ered. As shown in simulation results, the FMS smoother can be better than other two
filters in terms of error magnitude and error convergence. The magnitude of estimation
error of FMS smoother is smaller than that of other two filters on the interval where the
temporary model uncertainty exists. In addition, the convergence of estimation error of
FMS smoother is faster than that of other two filters after the temporary model uncer-
tainty disappears. Therefore, the FMS smoother can be more robust than other two filters
when applied to the noisy sinusoidal signal model with the temporary model uncertainty,
although the FMS smoother is designed with no consideration of robustness. This obser-
vation means that the FMS smoother has an intrinsic robustness property. Meanwhile,
the FMS smoother can be comparable to other two filters after the effect of the temporary
model uncertainty completely disappears. Figure 2 shows that the equivalent relationship
between FMS smoother and filter when there is no delay.

Figure 1. Estimation errors

5. Concluding Remarks. This paper has analyzed the relationship between finite mem-
ory structure smoother and filter. The FMS smoother has been developed by directly
solving an optimization problem with the unbiasedness constraint using only finite mea-
surements and inputs on the most recent window. The FMS smoother has been then
shown to be equivalent to the FMS filter, the batch unbiased FIR filter, and the backward
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Figure 2. Equivalent relationship between FMS smoother and filter

FMS filter according to the delay length between the measurement and the availability
of its estimate. Through computer simulations for a noisy sinusoidal signal model, the
effectiveness of the FMS smoother has been validated and the relationship between FMS
smoother and filter has been verified. An alternative FMS smoother for nonzero-mean
Gaussian noises can be researched as future work because the research work on this case
is relatively inactive.
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