
ICIC Express Letters ICIC International c⃝2021 ISSN 1881-803X
Volume 15, Number 9, September 2021 pp. 991–997

AN ORDER PICKING ALGORITHM FOR VERTICALLY STACKED
AND TOP-RETRIEVAL STORAGE SYSTEMS

Changmuk Kang

Department of Industrial and Information Systems Engineering
Soongsil University

369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea
ckang@soongsil.ac.kr

Received January 2021; accepted March 2021

Abstract. Automated and robotic warehouses are becoming more common in the logis-
tics industry. This study considers a variant of autonomous vehicle based storage and
retrieval (AVS/R) system in which a transfer robot stores and retrieves vertically stacked
bins on top of a grid of stacks. This system maximizes space utilization while spending
waste time for removing upper bins if a retrived bin is stored deeply down in a stack. Such
a process is called reshuffling. This study proposes an algorithm to determine a sequence
of picking orders that minimizes reshuffling. Instead of finding the optimal sequence
among exponentially many sequences, this study proposes an efficient greedy algorithm
that achieves a heuristic solution. In the numerical study, the best solution was 12.7σ
better than the random sequence average; it outperforms most arbitrary sequences.
Keywords: Commonality, Variety, Constraint, Supplier involvement

1. Introduction. Automated and robotic warehouses are becoming more common in
the logistics industry [1]. Where conventional systems use aisle-captive cranes, recent
systems use multi-deep racks to enhance storage density, in other words, space utilization.
According to de Koster [1], recent multi-deep systems can be classified into autonomous
vehicle-based storage and retrieval (AVS/R), shuttle-based storage and retrieval (SBS/R),
and robotic moveable rack (RMR) systems. This study considers a variant of AVS/R
system, which uses “autonomous unit load robots that move on a grid of frame above
the storage stacks [1]”. This system is implemented by AutoStoreTM, which is illustrated
in Figure 1. This system maximizes space utilization by vertically stacking storage bins
without aisles and retrieving them from the top. A disadvantage of this system is wasting
retrieval time due to reshuffling. All the upper (blocking) bins should be retrieved first
before retrieving a designated bin. Their depth levels are reshuffled during this process.
Since reshuffling time takes significant portion of the entire retrieval process, minimizing
the number of reshuffling moves greatly contributes to enhancing efficiency of this system.
This study proposes an algorithm to determine a sequence of picking orders to minimize
it. A process of picking up an order is a series of bin retrieval operations.

In general AVS/R and SBS/R systems, the system performance metrics, which are
mainly throughput time and space utilization, have been evaluated by queueing network
models [2,3]. They are, however, single-lane or dual-deep systems in which each bin can be
directly accessed by a vehicle or a shuttle. Whereas some studies [4,5] consider multi-deep
systems, those systems do not require reshuffling because all items are assumed identical.
Almassri et al. [6] evaluate costs of pickup routes in such systems with respect to item
storage configuraions; zone-specific and hit-rate based configurations.

Specifically targeted for the AutoStoreTM system, Zou et al. [7] analytically study effi-
ciency of storage policies considering reshuffling. They compare the system performance

DOI: 10.24507/icicel.15.09.991

991



992 C. KANG

Figure 1. Schematic view of the AutoStoreTM system (image source: itersnews.com)

in perspectives of dedicated versus shared storage policies, random versus zoned storage
policies, and immediate and delayed reshuffling policies. They modeled the system with a
semi-open queueing network (SOQN) and estimated expected system throughput under
these policies. Because this model compares the policies at a system-design level, it only
considers the expected time for reshuffling rather than computing the minimum time for
given orders. Tjeerdsma [8] proposes a redesign of the system’s order packing line, which
is independent of order picking operations.
Reshuffling has been widely studied in container yards rather than warehouses. It

takes significant time during retrieving a target container from many vertically stacked
containers. The literature has studied relocating blocking containers to other stacks to
minimize reshuffling [9,10], and determining loading locations anticipating future retrieval
[11-14]. Those problems are modeled as mixed integer programs and solved by heuristic
algorithms. A comprehensive review can be found in Lehnfeld and Knust [15].
A warehouse version of the reshuffling problem is easier on the one hand but more

complicated on the other hand. The storage bins, which are much lighter than containers,
have buffer space on the top floor of the storage stacks. The blocking bins temporarily stay
on the top roof floor and come back to the original stack after a target bin is retrieved; no
relocation is needed. On the other hand, our problem requires order-based picking that is
not considered in the container yard. Especially for warehouses to service online shopping
orders, an order consists of multiple stock keeping units (SKU), whereas containers are
retrieved one by one. If an order is picked up right now, all its constituting SKUs, which
are stored in bins at various locations, have to be retrieved once. The proposed algorithm
derives an optimal sequence of processing orders taking this constraint into account.
This study is organized as follows. Section 2 describes detailed operations of the AVS/R

system and formally defines the problem. Section 3 presents the fundamental principles of
the optimal solutions, and Section 4 develops an algorithm. The algorithm performance
is numerically demonstrated in Section 5, and Section 6 concludes the study.



ICIC EXPRESS LETTERS, VOL.15, NO.9, 2021 993

2. Problem Definition. A warehouse is an (l × m) grid of stacks, each of which has
maximum n storage bins. A bin is denoted by j, and max(j) < l×m×n. One bin stores
a single SKU. A bin is stacked from the bottom supported by below bins or the ground.
Every stack may have different heights. A stack of bin j is denoted by T (j), and its depth
is denoted by d(j) where d(j) is the number of bins stacked above it; d(j) = 0 if it is on
top of the stack, and d(j) = n − 1 if it is at the bottom and the stack is fully charged.
A bin can stay at the roof floor without bottom support, but only temporarily to lend
access to lower bins.

A horde of transfer robots moves upon the roof floor of the grid. They load and unload
bins from the top with a hoist to lift them. A robot can transfer only one bin at a time.
There are multiple ports to store and retrieve items. For storage, an item is packed into a
bin, and a transfer robot picks the bin at a port and loads it to a designated stack. Then
it is stored at the highest (lowest depth) position. Retrieval is a reverse operation. A bin
at the top is picked up from a stack and delivered to a port.

Reshuffling occurs if a target bin is below other bins. Those blocking bins are first
picked up and stay on the roof floor of near stacks until the target bin is retrieved. They
come back to the original stack in the same order of retrieval, and after item pickup at
the port, the target bin comes back on top of them; if bin D is retrieved from a stack (A,
B, C, D, E), the stack is reshuffled to (D, A, B, C, E) after finishing the retrieval. This
case counts the number of reshuffling moves as six by two moves (retrieval and return)
each for blocking bins A, B, C.

This study assumes a warehouse from which a set of orders R = {r1, . . . , rq} is waiting
to be picked up. The problem is to find the optimal sequence to serve all orders with
minimum reshuffling moves. An order is composed of different SKU items. Each item is
stored in a certain bin, and the required quantity is less than the quantity that the bin
stores. Then, without loss of generality, an order ri is represented as an unordered set
of distinct bins, such as ri = {j|order i demands bin j}. Although bins within an order
can be retrieved in any sequence, retrieval for another order cannot start before finishing
packing up this order. If the same bin is required by two different orders, it must be
retrieved twice for each order. Where order ri demands ki bins, total K = Σi=1,...,qki
retrievals are required without reshuffling. It is also the size of a solution vector. The
number of feasible solutions is q!× Πi=1,...,qki!, which is smaller than K!, but still huge.

3. Fundamental Principles. This study represents a solution vector of size K with
an order sequence s and within-order bin sequences t(i)’s. A complete solution vector is
obtained by concatenating t(i)’s in an order of s. There are two principles to construct
an optimal solution.

Principle 3.1. For two bins j1 and j2 where d(j1) < d(j2), they should be retrieved in an
order of (j1, j2).

If they are in different stacks, T (j1) ̸= T (j2), the number of reshuffling is independent
of their retrieval sequence. If they are in the same stack, T (j1) = T (j2), the number
reshuffling moves to retrieve bin j1 (or j2) is 2d(j1) (or 2d(j2)). If they are retrieved in a
sequence of (j1, j2), 2d(j1)+2d(j2) moves are required. Otherwise, if j2 comes first, depth
of j1 becomes d(j1)+1 because the retrieved bin comes back on top of the stack. The total
reshuffling moves are 2d(j2)+2d(j1)+2. Bin j1 should be retrieved before j2 to minimize
reshuffling moves. This relationship holds for every pair of bins in the same stack. From
Principle 3.1, an optimal within-order sequence is retrieving bin j in ascending order of
d(j).

The principle also holds between orders. If possible, it is optimal to retrieve an order
with upper bins first and an order with lower bins later. As shown in Figure 2, however,
it is often impossible. The bins are noted by capital letters and the numbers in the



994 C. KANG

Figure 2. Conflicting order sequences

parenthesis denote orders. For orders 1 and 2, target bins are in five stacks and six of
them share three stacks. Their within-order sequences are obtained by Principle 3.1 as [H,
C, E, B, F] and [A, J, D, G], respectively. If order 1 is first picked up, the whole sequence
is [H, C, E, B, F, A, J, D, G]. A lower bin B precedes upper bin A. Two more reshuffling
moves are required than when A precedes B. Reversely if order 2 is first picked up, bins
are retrieved in a sequence of [A, J, D, G, H, C, E, B, F]. Then, lower bin D precedes
upper bin C and lower bin J precedes upper bin H. Four more moves are required than
when C precedes D and H precedes J. Whereas both sequences violate Principle 3.1, the
former sequence less violates. From this observation, the second principle is established
with the notion of violating score v(t), which is the number of bin pairs violating Principle
3.1 in a bin sequence t.

Principle 3.2. For two orders i1 and i2 where v([t(i1), t(i2)]) < v([t(i2), t(i1)]), they
should be picked up in an order of (i1, i2).

An optimal sequence is derived from these two principles. An optimal within-order
sequence is simply a sorted list of bins by their depth. An optimal order sequence is more
complicated. If each bin is demanded by only one order, violating scores are independent
between order pairs. Then, an optimal sequence is obtained by sorting orders by sum-
mation of pair-wise violating scores. In practice, however, some bins (technically an SKU
in it) are repeatedly demanded by many orders. Because a bin once retrieved goes top
of its stack, a violating score is sequence-dependent. An optimal within-order sequence
also changes accordingly. Total q! sequences have to be evaluated to find the minimally
violating sequence. To avoid such exponential complexity, this study suggests an efficient
heuristic in the next section.

4. Algorithm Development. This section develops an algorithm to derive an optimal
sequence of retrieving bins following Principles 3.1 and 3.2. First, the optimal within-order
sequence t∗i of order i is trivially a sort list of its bins by their depth levels:

t∗i = (j[1], j[2], . . . , j[ki]) where d(j[1]) < d(j[2]) < · · · < d(j[ki]) (1)

Meanwhile, an optimal between-order sequence is obtained by enumerating all q! se-
quences and evaluating their violating scores. A greedy heuristic algorithm is developed
to solve it in polynomial time. The algorithm computes violating scores of every direc-
tional pair of orders. For each order, the scores for all other orders are summed up. The
summation implies a violating score induced by processing the order in the first place.
Orders are sequentially selected by this score. Note that, as mentioned above, it is not



ICIC EXPRESS LETTERS, VOL.15, NO.9, 2021 995

exact since a bin moves to another depth after retreival. To improve precision, pair-wise
violating scores are updated periodically. The detailed algorithm is as follows.

Order Sequencing Algorithm. With a set of orders R = {r1, . . . , rq}, and optimal
within-order sequences t∗i ’s,

1) Construct a pair-wise violating score matrix Vq×q of which element (i1, i2) is v([t(i1),
t(i2)]). Its diagonal elements are 0.

2) Compute ui =
∑

Vi· for each i.
3) Choose an order set B of size b by ascending order of ui. When two orders tie, choose

smaller ki (preferring shorter processing time).
4) From the first to the last order of B, sequentially update optimal within-order bin

sequences t∗i , ri ∈ B, and depth level d(j)’s of all affected bins. Replace R with
R′ = R\B and go to step 1).

5) Repeat 1) ∼ 4) until no order remains.

This algorithm sequentially chooses orders from start to end. The violating score matrix
V is updated for every b order during this process. The size b determines a tradeoff be-
tween precision and computation time. Larger b reduces computation time, but decreases
precision, and smaller b does vice versa.

5. Numerical Study. This section numerically evaluates performance of the developed
algorithm. The warehouse specification is referred from a real-world AutoStoreTM system:
the stack grid is of size (15 × 48) and the stack depth is n = 15 levels. Assuming the
grid is about a half-full, total 7,000 bins are randomly stacked in out of 15 × 15 × 48 =
10,800 slots. This example case generates q = 500 random orders, each of which required
different numbers of bins varying from 1 to 23 bins. They are randomly assigned from an
exponential distribution with mean 3. The number of bin retrievals to serve the orders
is K = 1,276. Total 600 unique bins are chosen out of the 7,000 bins. They are sampled
1,276 times with replacement to assign bins to orders. The most frequently retrieved bin
is required by 14 different orders.

The objective function is the number of reshuffling moves. As benchmarks, randomly
generated sequences and an unconstrained lower limit are compared with the algorithm
solutions. The lower limit value is obtained by counting reshuffling moves independently
for each bin to be retrieved. A repeatedly retrieved bin is counted only for the first
retrieval assuming it stays at the top afterward. It corresponds to the summation of
d(j)’s of unique bins at the initial state. It is practically infeasible since the roof floor
buffer is highly limited and every retrieval incurs reshuffling. The computation time to
get a solution is another criterion. The experiment was conducted on an Intel-i7 3.6GHz
machine with 8GB memory.

Table 1 shows the results. Any feasible solution cannot achieve less than 8,150 moves
by the lower limit. The best solution (8,878) comes when b = 1, which means a violating
score matrix is updated order by order. It is only 8.9% larger than the lower limit. As
b grows, a solution loses precision, but the computation time exponentially decreases.

Table 1. Comparison of performance

Solutions No. of reshuffling Computation time
Randomly generated sequences Mean: 9,422 −

(10,000 samples) Std. Dev.: 43
Algorithm solution (all at once) 9,266 0.1 sec.

Algorithm solution b = 50 9,088 0.8 sec.
Algorithm solution b = 1 8,878 38 sec.
Unconstrained lower limit 8,150 −



996 C. KANG

The worst case is the all-at-once solution (9,266), which means that b = q and an initial
violating score matrix is never updated. It is 13.7% larger than the lower limit, but
instantly computed. The solution quality monotonically improves for smaller b’s at the
cost of computation time. In practice, the system manager can choose an appropriate b
according to their computational capacity. If she wants to get the best solution within a
second, she can choose b = 50, which is 11.5% larger than the lower limit.
Meanwhile, the randomly generated sequences have a normal-like distribution with

standard deviation σ = 43. The best and worst algorithm solutions (8,788 and 9,266) are
12.7σ and 3.6σ depart, respectively, from their average solution (9,422). It means that
the algorithm-induced efficiency is nearly impossible to attain by an unplanned random
sequence.

6. Conclusions and Future Research. This study proposes a heuristic algorithm to
determine a sequence of picking orders in a vertically stacked and top-retrieval AVS/R
system. This sequence is especially useful for warehouses fulfilling retail shopping orders,
each of which is composed of multiple SKU items. If an order has bins that are stored
upper than all bins of another order, it should be picked up first to minimize reshuffling;
it is the fundamental principle of the optimal solution. Since many orders conflict with
each other in this principle, this problem needs to evaluate exponentially many sequences
to find the optimal order sequence. Instead, this study presents an efficient algorithm to
achieve a heuristic solution. This solution was 8.9%∼13.7% worse than the unconstrained
lower limit in the numerical study.
The algorithm may be improved in both precision and computation time. Whereas the

proposed one adopted a greedy approach, other heuristic approaches, like tabu search or
genetic algorithm showing good performance for sequencing problems, may be promising.

Acknowledgement. This work was supported by the Ministry of Education of the Re-
public of Korea and the National Research Foundation of Korea (NRF-2017R1D1A1B0303
2176).

REFERENCES

[1] R. de Koster, Automated and robotic warehouses: Developments and research opportunities, Logis-
tics and Transport, vol.38, pp.33-40, 2018.

[2] E. Tappia et al., Integrated storage-order picking systems: Technology, performance models, and
design insights, European Journal of Operational Research, vol.274, no.3, pp.947-965, 2019.

[3] X. Zhao et al., Analysis of the shuttle-based storage and retrieval system, IEEE Access, vol.8,
pp.146154-146165, 2020.

[4] G. D’Antonio and P. Chiabert, Analytical models for cycle time and throughput evaluation of
multi-shuttle deep-lane AVS/RS, The International Journal of Advanced Manufacturing Technol-
ogy, vol.104, nos.5-8, pp.1919-1936, 2019.

[5] G. D’Antonio et al., Analytical models for the evaluation of deep-lane autonomous vehicle storage
and retrieval system performance, The International Journal of Advanced Manufacturing Technology,
vol.94, nos.5-8, pp.1811-1824, 2018.

[6] A. M. M. Almassri, T. Kariya, C. Takizawa and H. Wagatsuma, A systematic evaluation method
for product configurations in the dynamic warehouse focusing on the zone-specificity, International
Journal of Innovative Computing, Information and Control, vol.16, no.4, pp.1313-1322, 2020.

[7] B. Zou, R. D. Koster and X. Xu, Operating policies in robotic compact storage and retrieval systems,
Transportation Science, vol.52, no.4, pp.788-811, 2018.

[8] S. Tjeerdsma, Redesign of the AutoStore Order Processing Line, Master Thesis, Industrial Engineer-
ing and Management, University of Twente, 2019.

[9] K. H. Kim and G.-P. Hong, A heuristic rule for relocating blocks, Computers & Operations Research,
vol.33, no.4, pp.940-954, 2006.

[10] Y. Lee and Y.-J. Lee, A heuristic for retrieving containers from a yard, Computers & Operations
Research, vol.37, no.6, pp.1139-1147, 2010.

[11] D.-W. Jang, S. W. Kim and K. H. Kim, The optimization of mixed block stacking requiring reloca-
tions, International Journal of Production Economics, vol.143, no.2, pp.256-262, 2013.



ICIC EXPRESS LETTERS, VOL.15, NO.9, 2021 997

[12] K. H. Kim, Y. M. Park and K.-R. Ryu, Deriving decision rules to locate export containers in container
yards, European Journal of Operational Research, vol.124, no.1, pp.89-101, 2000.

[13] N. Boysen and S. Emde, The parallel stack loading problem to minimize blockages, European Journal
of Operational Research, vol.249, no.2, pp.618-627, 2016.

[14] S. Boge and S. Knust, The parallel stack loading problem minimizing the number of reshuffles in the
retrieval stage, European Journal of Operational Research, vol.280, no.3, pp.940-952, 2020.

[15] J. Lehnfeld and S. Knust, Loading, unloading and premarshalling of stacks in storage areas: Survey
and classification, European Journal of Operational Research, vol.239, no.2, pp.297-312, 2014.


