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Abstract. For more realistic and accurate measurement of reliability importance, it is
necessary to use a method by which the reliability importance for given multiple criteria
such as quantitative and qualitative factors can be comprehensively evaluated. This paper
introduces a method of comprehensive reliability importance measurement for a complex
non-repairable system considering qualitative and quantitative criteria such as frequency
of failure, repair time, repair cost, failure effect, and safety. The purpose of the current
study was to determine the rank of each component in the system based on reliability
importance measures that are obtained according to the cross-evaluation concept of DEA
(Data Envelopment Analysis). As a demonstration of the proposed approach, we applied
it to an example system consisting of 59 components in a series structure. Through a
comparison with an interview-based approach, namely AHP (Analytic Hierarchy Pro-
cess), the proposed approach showed highly reliable reliability importance ranking results.
Keywords: Qualitative data, Reliability importance, Cross-evaluation, Data envelop-
ment analysis

1. Introduction. Nowadays, modern systems have been becoming more complicated in
response to the increasing demands of customers for higher reliability. For that reason,
many researchers have studied, devised, and proposed methods that meet reliability (i.e.,
RAM: Reliability, Availability, and Maintainability) requirements such as redundancy al-
location, hot-swappability, on-line repairability, and multi-stage interconnection design.
In order to meet the reliability requirements of complex systems efficiently and effective-
ly, it is necessary to first determine which components are more important to system
reliability improvement or more critical to system failure. This attribute, called “reliabil-
ity importance”, is evaluated based on operation scenarios, system reliability structures
(series, parallel, stand-based, etc.), and the lifetime distribution and maintenance char-
acteristics of each component in the system.

Reliability importance indices are calculated through a combinatorial approach such
as reliability block diagram, fault tree analysis, structure function, or Markov modeling.
For this reason, many developers have often used reliability importance indices to im-
prove system reliability and establish maintenance characteristics [1]. In the reliability
literature, many well-known reliability importance measures have been proposed, such as
Birnbaum importance, Barlow-Proschan importance, Fussell-Vesely importance, Natvig
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importance, importance for multistate systems, structure importance, and joint impor-
tance [2]. Birnbaum [3] first proposed the concept of reliability importance, classifying
the importance measures into three classes (structure importance, reliability importance,
and lifetime importance measures). These three important measures can be related to
the effects of components’ failures on system reliability. Thus, system design engineers
have considered them when evaluating RAM for satisfaction of customer demands in the
system design and development phase [4]. To evaluate each component’s reliability con-
tribution to system reliability, reliability block diagram often has been used. In the past,
some researchers have considered series functional configuration with reliability block di-
agram, because it can easily obtain the reliability importance measures. Although there
are mathematical difficulties in the case of a complex system that cannot be repaired,
system reliability can be calculated, based on which, the importance of components can
be evaluated. These results, however, will not be applied to the determination of the
effects of components’ reliability in a complex system, because the importance of each
component depends on various factors such as failure rate, repair time, repair cost, criti-
cality, and safety. Given these component characteristics, it has proved difficult to obtain
system reliability for a complex repairable system via a mathematical model. Alternative-
ly, simulation methods have been widely used to numerically obtain system reliability for
such a system. Simulation can provide system-related statistics as well as components’
event histories. Wang et al. [1] proposed a reliability importance measure FCI (Failure
Criticality Index), which is the percentage of times that a system failure event is caused
by a failure of a given component over the course of the simulation time.
However, it is not easy to collect complete information that is needed for simulation

implementation in the initial system design and development phase. Moreover, simulation-
based methods consider only quantitative factors (or criteria) in measuring the reliability
importance of components in a complicated system, not qualitative factors such as criti-
cality or maintenance difficulty. For more realistic and accurate measurement of reliability
importance, it is necessary to derive a method that can comprehensively evaluate the im-
portance of reliability when multiple criteria such as quantitative and qualitative factors
are given. In the past, some studies have used quantitative information such as com-
ponent’s unreliability, reliability structure, and maintenance time. Also, the aspect of
qualitative analysis for system reliability needs to be considered for evaluating system
reliability effectively. However, the proposed method in the reliability area is used to
calculate system reliability quantitatively. Thus, this paper introduces a comprehensive
scheme of reliability importance measurement for a complex non-repairable system con-
sidering quantitative and qualitative criteria such as frequency of failure, repair time,
repair cost, failure effect, and safety. The purpose of this study was to determine the rank
of each component in the system based on reliability importance measures that are ob-
tained by the cross-evaluation concept of DEA (Data Envelopment Analysis) that enables
objective weight assignment and multi-criteria decision-making. The paper is structured
as follows. Section 2 reviews the existing studies related to reliability importance, and
Section 3 explains the cross-evaluation DEA procedure. Section 4 provides an example
of cross-evaluation-based DEA experiment performed for one complex system. Finally,
Section 5 concludes the paper.

2. Literature Review. Reliability importance measures have often been used to evalu-
ate the effect of component reliability on system reliability and to assess system risk in the
system design and development phase. Birnbaum’s measure for independent components
in a system is still one of the most popular importance measures [3]. It focuses on system
reliability for small-scale systems with a series or parallel structure due to mathemati-
cal complexity. Also, various other importance measures such as criticality importance
and redundant importance have been proposed to attain better solutions for reliability
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optimization problems [5]. Kuo and Zhu [6] made a comprehensive contribution to impor-
tance measures in reliability engineering and explained reliability optimization problems
in terms of importance measures such as redundancy allocation, improved system relia-
bility, and component assignment.

Recently, simulation methods such as Monte-Carlo and discrete-event simulation have
been used to solve reliability optimization problems of complex systems. Yun et al. [7]
proposed a discrete-event simulation method that uses an object-oriented model to esti-
mate RAM for a multi-unit system of a complex reliability structure. Later, Chung [8]
developed a complex simulation model for evaluating the RAM of Multi-Indenture Multi-
Echelon (MIME) systems. A simulation method can provide approximations of system
performance measure and is useful for support of near-optimal solution discovery in reli-
ability optimization problems. Han and Yun [9] used the simulation model proposed by
Yun et al. [7] to find the weakest importance among components in a system based on
cost-effectiveness. Han et al. [10] studied an optimal maintenance strategy for 145 kV gas-
insulated switchgear and determined the weakest importance of a component that should
be maintained more frequently, by a commercial simulation s/w, AvSim. In order to
obtain accurate statistics related to system reliability through simulation, all information
(failure rate, repair time, repair cost, etc.) required for the simulation should be given.
However, it is difficult to obtain information in the initial system design and development
phase, and thus a study evaluating the importance of components in a system through a
qualitative method was also necessary.

3. Methodology. Since this proposed approach considers multiple criteria (i.e., five cri-
teria: frequency of failure, repair time, repair cost, failure effect, and safety) in measuring
the reliability importance of the components in a system, the problem to be solved can
be considered to be of the Multi-Criteria Decision-Making (MCDM) type. The most
important issue in MCDM problems is how to aggregate multiple criteria into a single
measurement score in a proper manner by choosing a set of reasonable weights for each
criterion. For assignment of reasonable weights to criteria, Data Envelopment Analysis
(DEA) has been utilized in many areas. DEA provides a way to make systematic choices
of the most favorable weights on multiple criteria for the evaluated Decision-Making Units
(DMUs)’ optimal scores, the weights being determined by solving mathematical programs.
A DEA determines the optimal score for a DMU, and it can rank DMUs according to their
scores. In terms of applying DEA to an MCDM problem, a DMU in DEA corresponds
to multiple alternatives in MCDM, and the input and output factors in DEA correspond
to multiple criteria in MCDM. Project selection, supplier selection, and ABC inventory
classification are some popular application areas wherein DEA is used as a multi-factor
performance measurement model [11].

To measure the reliability importance index in a multi-component system in terms
of multiple criteria such as frequency of failure, repair time, repair cost, failure effect,
and safety, we utilized the cross-evaluation concept of DEA. Conventional DEA has a
shortcoming in that it is too flexible in choosing weights for input and output factors. This
shortcoming is caused by the fact that a DMU can attain a full optimal score by choosing
extremely high weights on some input or output factors and extremely low weights on
other factors. This drawback may cause serious problems, especially when DEA is used
in the MCDM context, since it may prevent a reasonably acceptable choice of weights for
aggregating multiple criteria. This problem, in turn, leads to an unacceptable ranking
of items in the reliability importance index. Several approaches have been proposed to
address this problem, such as the restricted weighted model, the super-efficiency model,
and the cross-efficiency model [12,13].

The main idea of the cross-evaluation concept is that it is a peer-evaluation approach,
not self-evaluation in a conventional DEA model. The cross-evaluation concept has three
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advantages: first, it provides a unique ordering of DMUs; second, it eliminates unrealistic
weight schemes without requiring the elicitation of weight restrictions from application-
area experts; third, it allows for effective differentiation between good and poor per-
formers. For these reasons, the cross-evaluation concept has been considered a powerful
extension of DEA. Although the cross-evaluation concept of DEA has proven effective in
ranking DMUs, there still exist some problems that limit its use. One such problem is the
non-uniqueness of the calculated result (i.e., optimal score). Specifically, optimal scores
obtained from the original DEA model are generally not unique, and depend on which of
the alternative optimal solutions to the DEA linear programs is used. Several approach-
es have been developed to alleviate this problem such as aggressive models, benevolent
models, the game cross-efficiency model, and the units-invariant multiplicative model.
Especially, we apply the PEG (Pairwise Efficiency Game) model proposed by Talluri [14],
which is one of the aggressive models. The reliability importance index of each component
in a system is obtained by the cross-evaluation concept of DEA as follows.

Algorithm of cross-evaluation concept of DEA
Index:
r: Index of criterion (r = 1, . . . , s)
k: Index of evaluated component
j: Index of component s
Parameters:
urk: Weight given to the r-th criterion of the k-th component
lk: Reliability score of the k-th component in terms of different criteria
Cpk: Cross-evaluation score for the p-th component cross-evaluated by the k-th com-
ponent
Method:
Step 1: Calculate the lk of each component by following model (1)

lk = Max
s∑

r=1

urkyrk

(1)
s.t.

s∑
r=1

urjyrj ≤ 1, j = 1, . . . , n

urk ≥ 0, ∀r
Step 2: Calculate the cross-reliability importance score of each component by following
model, where l∗k is the optimal score of the k-th component as determined by model
(1). If p and k are the same, the optimal cross-evaluation score will be the same as
the relative score

Cpk = Min
s∑

r=1

urkyrp

(2)
s.t.

s∑
r=1

urjyrj = l∗k

s∑
r=1

urjyrj ≤ 1, j = 1, . . . , n, j ̸= k

urk ≥ 0, ∀r
Step 3: Calculate the reliability importance indices (Ip) of the component s by model
(3), where C∗

pk is the optimal cross-evaluation score for the p-th component by the k-th
component.

Ip =

∑n
k=1C

∗
pk

n
, p = 1, . . . , n (3)
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Figure 1 shows an illustrative example of the cross-evaluation concept of the DEA
algorithm for the five components with five criteria. The relative scores (l∗k) for the five
components are calculated.

Figure 1. Illustrative example of cross-evaluation

The scores of components 1, 2, 3, and 5 are the same, which means that the ranking
is not precise. The cross-evaluation score table illustrates that each cell shows the cross-
evaluation score of the competing components in the corresponding cell evaluated by the
target component. For example, the cross-evaluation score of competing component 2 is
0.93, which is evaluated by target component 3. Based on the cross-reliability importance
score of the five items, the reliability importance indices for the five components are
calculated by model (3).

4. Numerical Results. As a demonstration of the proposed approach, we applied it
to an example system consisting of 59 components in a series structure. The reliability
importance of each of the units was evaluated in terms of five criteria: frequency of failure,
repair time (minutes), repair cost (10,000 won), failure effect (%), and safety (%). All of
these criteria were assumed to be positively related to the reliability importance of the
components. The descriptive statistics for the five criteria of the components in the system
are listed in Table 1. l∗k and I∗p for the reliability importance of all of the components and
their ranking are presented in Figure 2, in which all of the DMUs are sorted in descending
order of reliability importance index (I∗p ). According to the l∗k score, 26 components
(5, 26, 6, 27, . . . , 22, and 9) have the same score 1, and thus are deemed to be of
greater importance. However, the same score among many components possibly incurs

Table 1. Descriptive statistics for components’ five criteria

Statistics
Criteria

Frequency of failure Repair time Repair cost Failure effect Safety
Avg 49.3 24.2 78.6 64.2 31.1
Max 50.0 75.0 600.0 90.0 60.0
Min 10.0 2.0 10.0 10.0 27.0

StDev 5.2 18.4 146.0 26.5 9.0
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Figure 2. Reliability importance results for 59 components

the problem of insufficient differentiation among components and inaccurate ordering. In
contrast, the reliability importance index (I∗p ) of the components yields a unique ordering.
For example, the reliability importance of components is the highest in the order of
components 5, 26, and 6, even if they have the same score of l∗k.
In order to evaluate the effectiveness of the results of the proposed approach, the relia-

bility importance ranking results were compared with engineer-interview-based approach,
namely AHP (Analytic Hierarchy Process). As a result of AHP, the weights for each
criterion of the system were calculated as 0.172 for frequency of failure, 0.213 for repair
time, 0.201 for repair cost, 0.317 for failure effect, and 0.097 for safety. In the case of the
system used in this numerical experiment, the expert engineers gave quantitative scores
for each criterion by referring to Tables 2 and 3 in measuring the reliability importance
of the components. Figure 3 shows the comparison results for the reliability importance
index as obtained by cross-evaluation and interview, and it can be seen that the patterns
for the two sets of rankings are very similar. In addition, the correlation coefficient for
the ranking of the two approaches was 0.7283, indicating a high correlation. Therefore,

Table 2. Summarization of continuous data as categorical data

Grade Repair time
Repair
cost

Effect of failure Safety
Frequency
of failure

1 ∼ 1 day ∼ 10 No effect No effect
Occurs

frequently

2 1 day ∼ 3 days 10 ∼ 50
Running

but no monitoring
Recurring

Rarely
occurs

3 3 days ∼ 1 week 50 ∼ 200
Running

but no protection
Dying

Never
occurs

4 1 week ∼ 2 weeks 200 ∼ 300
Running

but degradation

5 2 weeks ∼ 4 weeks 300 ∼ 600
Main functions

are down
6 4 weeks ∼ 6 weeks 600 ∼ 700
7 6 weeks ∼ 8 weeks
8 8 weeks ∼ 10 weeks
9 10 weeks ∼ 12 weeks
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Table 3. Score of each criterion according to grade

Grade 1 2 3 4 5 6 7 8 9

Criteria

Repair time 1 2 6 11 21 35 49 63 75
Repair cost 10 30 140 250 450 600
Failure effect 10 30 50 70 90

Safety 30 60 90
Frequency of failure 90 50 10

Figure 3. Ranking results for the proposed approach and interview-based approach

we may claim that the proposed approach shows highly reliable results comparable to
those of the interview-based approach, and that it can be considered to be an alternative
method to the existing subjective weight-assignment methods such as AHP.

5. Conclusion. In this paper, we introduced a comprehensive scheme of reliability im-
portance measurement for a complex non-repairable system considering multiple qualita-
tive and quantitative criteria. To achieve this, we utilized the cross-evaluation concept
of DEA (Data Envelopment Analysis), and ranked all of the components in a system
based on reliability importance indices. As a demonstration of the proposed approach,
we applied it to an example system consisting of 59 components in a series structure.
We showed that the reliability importance index of the components as obtained by the
proposed approach yielded a unique ordering and a highly reliable result in its reliability
importance ranking by comparison with the interview-based approach. However, in or-
der to more accurately evaluate system importance, a method combining qualitative and
quantitative methods is needed. In a further study, we will propose a new methodology
to evaluate the reliability importance by given quantitative and qualitative multi-criteria.

Acknowledgment. This work was supported by the National Research Foundation
(NRF) grant fund by the Korea government [Grant Number NRF-2021R1F1A1052422].

REFERENCES

[1] W. Wang, J. Loman and P. Vassiliou, Reliability importance of components in a complex system,
Annual Symposium Reliability and Maintainability (RAMS2004), pp.6-11, 2004.

[2] S. Wu and F. P. Coolen, A cost-based importance measure for system components: An extension
of the Birnbaum importance, European Journal of Operational Research, vol.225, no.1, pp.189-195,
2013.

[3] Z. W. Birnbaum, On the importance of different components in a multi-component system, in
Multivariate Analysis – II, P. R. Krishnaiah (ed.), Waltham, Academic Press, 1969.

[4] M. Catelani, L. Ciani and M. Venzi, Component reliability importance assessment on complex sys-
tems using credible improvement potential, Microelectronics Reliability, vol.64, pp.113-119, 2016.



58 Y.-J. HAN AND J. PARK

[5] S. Si, J. Zhao, Z. Cai and H. Dui, Recent advances in system reliability optimization driven by
importance measures, Frontiers of Engineering Management, vol.7, pp.335-358, 2020.

[6] W. Kuo and X. Zhu, Importance Measures in Reliability, Risk, and Optimization: Principles and
Applications, John Wiley & Sons, New Delhi, 2012.

[7] W. Y. Yun, I. K. Moon and K. R. Kim, Simulation-based maintenance support system for multi-
functional complex systems, Production Planning and Control, vol.19, no.4, pp.365-378, 2008.

[8] I. H. Chung, Simulation-Based Repair Policy for MIME System, Ph.D. Thesis, Pusan National
University, 2009.

[9] Y. J. Han and W. Y. Yun, Simulation-based RAM design of a multi-unit system with a hybrid
genetic algorithm, International Journal of Industrial Engineering, vol.24, no.4, 2017.

[10] Y. J. Han, Q. Q. Zhao and W. Y. Yun, Optimal inspection and replacement strategy for 145 kV
gas-insulated switchgear, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability, DOI: 10.1177/1748006X19893540, 2019.

[11] J. Park, H. Bae and J. S. Bae, Cross-evaluation-based weighted linear optimization for multi-criteria
ABC inventory classification, Computers & Industrial Engineering, vol.76, pp.40-48, 2014.

[12] A. Charnes, W. W. Cooper, Z. M. Huang and D. Sun, Polyhedral cone-ratio DEA models with an
illustrative application to large commercial banks, Journal of Econometrics, vol.46, no.1, pp.73-91,
1990.

[13] P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis,
Management Science, vol.39, no.10, pp.1261-1264, 1993.

[14] S. Talluri, A benchmarking method for business-process reengineering and improvement, The Inter-
national Journal of Flexible Manufacturing System, vol.12, no.4, pp.291-304, 2000.


