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Abstract. In many measurement applications, the small number of sensors or the lim-
ited measurement time causes the measured signal to be incomplete. Therefore, recon-
struction is required to obtain the original signal. Total variation (TV) is a reconstruc-
tion method that can improve the shape of an object. However, noise still appears around
the object. Also, the l1-norm compressive sensing reconstruction has good estimation
accuracy but has a long computation time. This paper proposes a combination of TV and
random raw patches for image reconstruction from incomplete frequency. We suspect
that using these two methods can improve the object shape and reduce noise even though
it requires a longer computation time. Based on the experimental results, the proposed
method has a better structural similarity (SSIM) index on ten test images than TV and
seven test images than without TV (modified random raw patches alone). Visually, the
object image becomes sharper while the noise becomes lower.
Keywords: Image reconstruction, Compressive sensing, Random raw patches, TV, In-
complete frequency

1. Introduction. In digital applications, a digitization step of the input signal is re-
quired before entering the signal processing. This digitization step consists of sampling,
quantization, and encoding. The sampling theory is first proposed [1], and then expanded
by [2]. The minimum sampling frequency is twice the maximum frequency of a signal.
This theory still has two weaknesses, i.e., a large number of samples and the high redun-
dancy for certain signals, like on periodic signals. This weakness triggers the proposed
compressive sensing (CS). The pioneers of this CS theory are [3] and [4]. CS has the
assumption that the signal is sparse, meaning that the signal has only a few significant
parts, and the rest is zero, for example, a sinusoidal signal in the frequency region. The
sparsity of a signal is denoted by the level of sparsity k. For example, k = 3 means that
there are three nonzero values in the signal.

Apart from sparsity, CS also contains several other important terms, namely norm,
measurement matrix, and restricted isometric property. If x(n) is a signal at the interval
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n = 1, 2, . . . , N , then the p-order norm (non-negative p) of x(n) is

|x|p = p

√√√√N−1∑
0

|x(n)|p. (1)

In (1), symbol |.| denotes absolute value. Norms that are often used in CS are the 0-
order norm (l0), the 1st-order norm (l1), and the 2nd-order norm (l2). The 0-order norm
expresses how many nonzero values in the signal (the level of sparsity k), the 1-order
norm expresses the absolute number of nonzero values in the signal, while the 2-order
norm expresses the Euclidean distance formed by nonzero values in the signal.
A measurement matrix or sensing matrix is used to decrease the sample number of the

original signal. If x consists of n elements, then to decrease the sample of matrix x to a
matrix y with the size of m elements (m < n), measurement matrix A is needed with size
m× n.

y = A× x (2)

In (2), x is the original signal with size n × 1 and y is the measurement signal with size
m× 1.
Another problem with CS is how to choose the measurement matrix A so the signal

x can be retrieved from the signal y. Candes [4] derives the property of the matrix A
which is named a restricted isometric property (RIP). The matrix A has RIP if fulfilling
the following criteria

(1− δs)|x|2 ≤ |Ax|2 ≤ (1 + δs)|x|2. (3)

In criterion (3), note that we have a small value δs. This criterion means that the 2nd-
order norm of the original x does not change much after being transformed into the
measurement signal y.
The process of retrieving the original signal x is called reconstruction. In general, there

are three methods we can use for reconstruction, namely the Greedy algorithm [5-8],
convex optimization [9,10], and weight point algorithm [11]. The Greedy algorithm has
a fast computation time but results in less accuracy. On the other hand, convex opti-
mization can provide good accuracy but requires a long computation time. As a middle
ground, the weight point algorithm has better accuracy than the Greedy algorithm and
the computation time is faster than convex optimization.
With a focus on the quality of the reconstructed results and ignoring computation

time, we combined TV and random raw patches. The reconstruction using the random
raw patches method [12] is a convex optimization group using the l1-norm minimization
technique. Appearing before CS, TV [13] is also a minimization technique that is still
popularly used in the field of image reconstruction [14,15]. In this paper, we apply the TV
before acting the training process to enhancing the quality of the low-resolution image. We
suspect that if the quality of the low-resolution image is close to the high-resolution image,
it can give better reconstruction results. As the confirmation of the proposed results, we
compare its performance with TV and without TV (modified random raw patches alone).
The organization of this paper is as follows. In Section 2, we explain the proposed

combination of TV and random raw patches. In Section 3, we give the results of the
proposed method compared to TV and without TV. We then conclude and discuss the
future research in Section 4.

2. Proposed Method. Figure 1 represents the proposed method that is modified from
the random raw patches [12] by removing bicubic interpolation and iterative back projec-
tion and adding TV and highest magnitude attenuation (HMA). The TV and HMA are
in white in Figure 1. The proposed method is composed of a training and reconstruction
process. A high-resolution and low-resolution dictionary is the output of the training.
Then, the dictionary is used in the reconstruction to get an estimated image.
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Figure 1. The proposed method, modified from [12]

In the training, high-resolution images are transformed into the frequency domain by
utilizing the Fourier transform. Then, the results are multiplied with a sparse sampling
operator to get its dirty beams. The sparse sampling indicates incomplete frequency mea-
surement. Then, the inverse Fourier transform is performed on the dirty beams to get
its dirty images. Subsequently, the dirty images are processed with TV and HMA first
before using them as low-resolution images.

Assuming aij are pixels in coordinate (i, j) of a 2-D image a with size m × m, then
determine the operators

Gh;ija =

{
ai+1,j − aij, i < m

0, i = m
, (4)

Gv;ija =

{
ai,j+1 − aij, j < m

0, j = m
, (5)

and

Gija =

(
Gh;ija

Gv;ija

)
. (6)

The TV of a is defined by [13]

∥a∥TV =
∑
ij

√
(Gh;ija)2 + (Gv;ija)2 =

∑
ij

∥Gija∥2, (7)

or

∥a∥TV =
∑
i

∑
j

√
|ai+1,j − aij|2 + |ai,j+1 − aij|2. (8)

So we can recover the image a using TV minimization with equality constraints [16]:

minTV(a) subject to Aa = b, (9)

with A as the measurement matrix, and b as the observation result. Meanwhile, HMA is
performed with the following steps: do Fourier transform to the output of TV, separate
the magnitude and phase, attenuate the highest magnitude, unite back the magnitude
and phase, and do the inverse Fourier transform.
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The next step is filtering. We can conduct the filtering using one or more filters. The
filtering is a 2-D convolution between the low-resolution image and the filters to obtain
some features. Then, we take the random raw patches from the low-high resolution images.
After that, the patches are converted to 1-D. A joint learning process is used to connect the
low-high resolution patches. We apply a sparse coding method in [17] to the joint learning.
Finally, two dictionaries (low-resolution dictionary and high-resolution dictionary) are the
training output and will be used in the reconstruction process.
In reconstruction, all the processes are almost the same as in the training, except in the

sample all patches, the compressive sensing reconstruction, and the post-processing. The
sample of all patches is performed by taking all the patches from left to right and top to
bottom. Then, the feature patches are converted into 1-D and normalized, divided by the
patch norm. In the compressive sensing reconstruction, the normalized feature patches
and the low-resolution dictionary are used to solve a convex problem using Lasso method
[18]. Lasso is a linear regression that works based on l1-norm and used to find the sparse
coefficients based on the following equation

m = Klrβ. (10)

In Equation (10), m is the normalized feature patch, β is the sparse coefficient, and Klr

is the low-resolution dictionary. To find the sparse coefficient β, we can use the following
form

min
β

(
∥m−Klrβ∥22 + λ∥β∥1

)
. (11)

In form (11), the sparsity of β can be tuned with the parameter λ. The user can set the
value of λ to balance the solution sparsity and accuracy of the estimation to m. In the
post-processing, we can get an estimated 1-D high-resolution patch m̂ using the following
equation

m̂ = Khrβn. (12)

In Equation (12), Khr is the high-resolution dictionary and n is the norm of the feature
patch. Finally, we need to add the mean of the 1-D low-resolution patch. Then, rearrange
all estimated 1-D high-resolution patches to 2-D before writing to the estimated high-
resolution image.

3. Results. We train 60 high-resolution images in grayscale and perform sparse sam-
pling operation using the sampling pattern in Figure 2. The high-resolution images are
natural images and in different sizes to enrich the dictionaries. Then, high-pass filters
([−1 0 1], [−1 0 1]T , [1 0 −2 0 1], and [1 0 −2 0 1]T ) are used to ob-
tain the corresponding features [12]. High-pass filter is chosen because it is more sensitive
to the human eye. One pair of feature patches and high-resolution patches are sampled
at the same position. Then, the other pairs are sampled at different positions randomly.

Figure 2. The binary image in pixels (sampling pattern to obtain the
dirty image), modified from [19]
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The 3× 3 patch is chosen because it gives the best results. A high-resolution dictionary
Khr of size 9× 300 is generated from sampling 300 pairs of patches.

In the reconstruction, we use astronomical images from the VLBA-BU Blazar Moni-
toring Program [20]. These images are used as the original image. Meanwhile, its dirty
images are obtained by applying the same sparse sampling pattern in Figure 2. After re-
construction, the estimated high-resolution images are compared with the original image
using SSIM index [21].

To determine the HMA performance, we applied HMA to 33 TV output images. All
images experienced SSIM improvement except for the 7th image. The best improvement
was in the 24th image (see Figure 3). Visually, HMA can reduce noise around objects.
Figure 4 shows the image before and after the HMA, and the plot of magnitude before
doing HMA (it appears that there is the highest magnitude before being damped).

Figure 3. The performance of HMA: SSIM improvements on 33 images

Figure 4. Top left: TV output image (before HMA). Top right: the image
after HMA. Bottom: plot of magnitude before HMA (the vertical axis is
the magnitude and the horizontal axis is the i-th pixel).
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The next experiment is to find out the performance of the proposed method when
compared to TV. We reconstruct ten images measuring 70×70. Figure 5 shows the SSIM
comparison between the proposed method with TV, the proposed without TV, and TV.
On the proposed without TV (modified random raw patches alone), the dirty image will
directly be input to the HMA without going through the TV. In these 10 test images,
the proposed method with TV and that without TV have a higher SSIM than the TV.
However, if compared to without TV, the proposed method with TV has a higher SSIM
except for the D, F, and H images (see Figure 6). Visually, the proposed method with
TV is of better quality than without TV. The proposed method with TV can sharpen
the object on all test images (see Figures 7 and 8). If we examine these results, in the

Figure 5. SSIM of reconstruction results: TV, proposed without TV, and
with TV

Figure 6. SSIM improvement for TV: proposed method with TV and
without TV
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proposed method with TV, TV output that is better than the dirty image affects the
quality of the low-resolution image. Meanwhile, in the proposed without TV, the dirty
image did not have improvement. These results strengthen the hypothesis. It says that
the closer the quality of the low-resolution and the high-resolution images in the training
process, the better the reconstruction results.

Figure 7. Reconstruction results. Left to right: TV, proposed without
TV, proposed method with TV, and the original image. Top to bottom:
image A, B, C, D, E, and F.
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Figure 8. Reconstruction results. Left to right: TV, proposed without
TV, proposed method with TV, and the original image. Top to bottom:
image G, H, I, and J.

4. Conclusions. In this paper, we perform an image reconstruction that has incomplete
frequency information. We modify the random raw patches method by removing bicu-
bic interpolation and iterative back projection and adding TV and HMA. The proposed
method is composed of the training and reconstruction process. In the training, we use
natural images and their dirty images to obtain the low-high resolution dictionaries. Then
in the reconstruction, we use the compressive sensing method to reconstruct astronomical
dirty images. For the result compared to TV on 10 test images, the proposed method
has a higher SSIM. Meanwhile, compared to without TV, only seven have a higher SSIM,
but visually ten images are of better quality. It should be noted that the proposed com-
bination of TV and random raw patches is designed to reconstruct an image from the
incomplete frequency with a sampling pattern in Figure 2 and no noise environment. In
the future, we plan to adopt this proposed approach in the case of measurements with
different sampling patterns and noisy environments. For example, we can find cases of
incomplete frequency measurement with the noisy environment in astronomical imaging,
magnetic resonance imaging, medical imaging, molecular imaging, and others. Applying
several denoising methods as in [22] can also be a research opportunity to overcome noise
problems in reconstruction.
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