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Abstract. The emergence of machine learning methods which found applicability in
time series forecasting, motivated more recent researches and a challenge for choosing
appropriate forecasting methods. This study explored the performance of four forecasting
methods: autoregressive integrated moving averages (ARIMA), artificial neural networks
(ANN), support vector machines (SVM) and regression models with ARIMA errors. To
improve their performance, bootstrap aggregating (bagging) was applied. The performance
of the different methods was illustrated using South African air passenger data collected
for planning purposes by the Airports Company South Africa (ACSA). The results of the
accuracy measures illustrated that the regression model with ARIMA errors outperformed
all the other methods, followed by the ARIMA model. The results of the training and
the test data sets show that the ANN method is prone to overfitting. The bagged models
showed mixed results with marginal improvement on some of the methods for some per-
formance measures. It can be concluded that the traditional statistical forecasting methods
(ARIMA and the regression model with ARIMA errors) performed better than the ma-
chine learning methods (ANN and SVM) on this data set.
Keywords: Time series forecasting, Autoregressive integrated moving averages (ARI-
MA), Artificial neural networks (ANN), Support vector machines (SVM), Regression
model with ARIMA errors, Bootstrap aggregating (bagging), Air passengers

1. Introduction. Forecasting is an essential planning tool for organizations, enabling
them to better understand the future. One of the most critical steps in the forecasting
process is choosing and fitting suitable models.

In recent years there has been an increase in the number of time series forecasting
methods available to the forecaster. This is mainly due to the emergence of the machine
learning methods, which also found applicability in time series forecasting. These methods
include the artificial neural networks (ANN) and support vector machines (SVM). The
increase in the number of time series methods has also presented some challenges when
deciding on the forecasting methods to consider for evaluation. The motivation for this
research is to explore traditional statistical and machine learning forecasting methods,
and compare their performance on forecasts using air passenger data. Trend and seasonal
components are usually identified in air passenger data and the behaviour of the forecast-
ing methods under these conditions is of interest. The forecasting methods identified were
the autoregressive integrated moving average (ARIMA), ANN, SVM and regression with
ARIMA errors. Bootstrap aggregating (bagging), which is popular in machine learning
and is used to improve the accuracy of the predictors, was applied to all the methods
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to investigate improvement. The results indicated that the ARIMA and regression with
ARIMA errors performed best for this data.
The literature shows wide applicability for these forecasting methods. These include

[1, 2, 3] for ARIMA, [4, 5, 6] for ANN, [7, 8] for SVM and [9] for regression models
with ARIMA errors. A comparison of some of these forecasting methods can be found in
[10, 11].
Time series forecasting is widely used in aviation to forecast air passenger demand.

The application of time series methods to forecast this demand in the literature includes
studies by [12, 13, 14, 15]. An ensemble empirical mode decomposition (EEMD)-Slope-
SVMs was proposed by [12]; this modelling approach is based on the SVM modelling
framework. They used air passenger data from selected airlines in the United Kingdom
and the United States for comparing the use of the SVM, Holt-Winters and ARIMA
methods. Single moving average and simple exponential smoothing methods were used
by [13] to forecast demand for air passengers in Nigeria. Bagging and Holt-Winters meth-
ods were combined to forecast demand for air passengers using data from 14 different
countries [14]. An application of neural network forecasting in an airline can be found
in [15]. They compared the method with traditional forecasting methods and the results
showed promising performance. The performances of the traditional statistical forecasting
methods were compared with the machine learning methods by [11]. The results showed
that the traditional statistical methods outperformed machine learning methods and the
authors concluded that there is still a lot of work required to improve machine learning
methods for forecasting. The most recent algorithms of machine learning methods were
applied in this research.
The forecasting methods investigated in Section 2 are ARIMA, ANN, SVM, regression

models with ARIMA errors and bagging. Accuracy measures to compare the performance
of different methods are summarized in Section 3. An application to South African air
passenger data is illustrated in Section 4, with conclusions in Section 5.

2. Forecasting Methods. A compact description of the methods follows.

2.1. ARIMA. An ARIMA model assumes that all the information needed to predict
the future is contained in the history of the time series. The model can be represented
by the notation ARIMA(p, d, q). The variables p and q represent the order of the AR and
the MA part of the model, respectively. The d represents the order of differencing and
corresponds to the I in ARIMA. If the time series is not stationary in the mean, one
needs to take the first difference of the series. If, after differencing, the series still shows
signs of non-stationarity, then further differencing can be done until the series becomes
stationary. For a seasonal time series, a seasonal difference is recommended. If the time
series remains non-stationary after seasonal differencing of the data, first differencing can
be applied to the resulting data.

2.2. ANN. There are two main network designs for the ANN method, namely feed-
forward networks and recurrent networks. The feed-forward network (FFN) design has
all the arcs of the network pointing forward, while the recurrent network allows for infor-
mation to be fed back to the previous nodes in the network. The FFN model is called a
multi-layer perceptron (MLP) and uses a network consisting of three layers, namely the
input, hidden and output layers, which are connected by acyclic links. As input, each
node gets a weighted sum of the nodes in the previous layer. Then a transfer function is
applied to the input nodes and the relevant output is weighed to produce the final output.
Some variants of the ANN model use the feed-forward network. The time-lagged neural
networks and seasonal artificial networks are also suitable for time series forecasting.
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2.3. SVM. The SVM model uses the structural risk minimization principle which aims
to minimize the upper bound of the generalization error. This may be compared to the
traditional neural networks, which use an empirical risk minimization principle. The ad-
vantage of using SVM is that it is able to generalize to unseen data. The solution found
by SVM is always unique and optimal and this therefore guarantees that the solution
found is not a local minimum. To use the SVM for time series analysis, the concept of
support vector regression (SVR) needs to be understood. The method is discussed by [16]
and uses an ϵ-intensive loss function. The idea is to penalize errors that lie outside the
ϵ-tube created. This tube is formed symmetrically around the estimated function with a
minimal radius. Small values are desirable as they minimize the error of misclassification.
The least square version of the SVM was formulated by [17] and uses the equality con-
straint instead of the inequality constraint. It employs a sum-squared error (SSE) cost
function, instead of the quadratic program used in traditional SVM. The dynamic least
squares support vector machine (DLS-SVM) is derived from the LSSVM. According to
[18], the method works well on time series data and real-time systems. The goal of the
DLS-SVM procedure is to ensure that the model adjusts to the nonlinear dynamics in
the data over time. This is achieved by removing older observations from the training
data and replacing them with the latest observations when they become available and the
model is refined accordingly.

2.4. Regression with ARIMA errors. An ARIMA(p, 0, 0) or AR(p) model is defined
as

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + et (1)

where c is a constant term, ϕi is the ith autoregressive parameter and et is the error term
at time t.

If Yt−i for i = 1, 2, . . . , p are replaced by Xi,t where Xi,t are independent variables, then
Yt becomes a multiple regression model. Equation (1) can now be rewritten as

Yt = c+ ϕ1X1,t + ϕ2X2,t + · · ·+ ϕpXp,t + et. (2)

In multiple regression analysis the error term et is assumed to be an uncorrelated series. If
this assumption is relaxed and correlated errors are allowed for, then Equation (2) becomes
a regression model with ARIMA errors. The error term is modelled as an ARIMA process
and represented by Nt.

The method of ordinary least squares estimation cannot be used for this type of regres-
sion where the errors are correlated as this leads to incorrect estimates of the parameters.
This problem is caused by the autocorrelated errors from the model, while the other prob-
lem is that autocorrelated errors may lead to spurious regression. Instead, a generalized
least squares estimation or method of maximum likelihood estimation is recommended.
A procedure to fit a regression model with ARIMA errors is found in [19].

2.5. Bootstrap aggregating. Bootstrap aggregating, also known as bagging, was first
suggested by [20]. In time series analysis, bagging is achieved by randomly generating new
time series that are similar to the original time series with the aid of a bootstrap method.
With this approach, the inputs to the model are bootstrapped and copies of possible
predictors are estimated from the bootstrapped inputs. An aggregate of the output of
these predictors is then used as the final output of the model. Variations are the moving
block bootstrap (MBB), the dependent wild bootstrap (DWB) and the tapered block
bootstrap (TBB) bagging procedures.

3. Accuracy Measures. The error of a forecast, et = Yt−Ft, is defined as the difference
between the actual value Yt and the forecast value Ft of the series. Some well-known
accuracy measures from the literature used in this study are summarized in Table 1.
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Table 1. Accuracy measures for forecasting

Accuracy measure Acronym Formula

Mean error ME 1
n

∑n
t=1 et

Root mean squared error RMSE
√

1
n

∑n
t=1 e

2
t

Mean absolute error MAE 1
n

∑n
t=1 | et |

Mean percentage error MPE 1
n

∑n
t=1

(
Yt−Ft
Yt

)
× 100

Mean absolute percentage error MAPE 1
n

∑n
t=1

∣∣∣(Yt−Ft
Yt

)∣∣∣× 100

A smaller value of the accuracy measure indicates a closer forecast to the true value.
The method with the smallest value can be regarded as performing best.

4. Application. In this section, the selected methods are applied to air passenger data.

4.1. The time series. The time series consists of 94 observations, the total number of
air passengers passing through major South African airports per month and pertains to
the period between April 2012 and January 2020 obtained from the Airports Company
South Africa website [21].

Figure 1. Passengers passing through South African airports from April
2012 to January 2020

Figure 1 shows an upward trend and signs of seasonality, where passenger numbers are
at their highest for the year in December and March, and lowest in June. The peaks
correspond to the summer holiday season in the southern hemisphere, while the lows
correspond to the winter season. The visibility of trend and seasonality means that the
series is not stationary in the mean. The slight variation in the level of seasonality over
time was left as it is.
For the purpose of fitting the different forecasting methods, the last 12 months of the

data were reserved as a test set. The data used for fitting the models will be referred to
as the training set and the remaining observations will be referred to as the test set.

4.2. ARIMA model. The R function auto.arima() from the forecast package was used
to fit a suitable ARIMA model for the time series. An ARIMA(0, 1, 1)(0, 1, 1)12 model
with MA parameter −0.6038 and seasonal MA parameter −0.4723 was chosen to fit the
air passenger data best. There is a normal differencing of order one, together with a
12-month seasonal differencing of order one.
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4.3. ANN model. The nnetar() function in the R forecast package implements a feed-
forward neural network with a single hidden layer and lagged inputs for forecasting uni-
variate time series [22]. This function allows for an automatic model selection of an ANN
model and was used in this section to fit ANN models for the time series data under
investigation. An ANN model can be written as NNAR(p, P, k)m, where k is the number
of hidden nodes, the parameter p is the number of lagged inputs and P is the number
of seasonal lags. The parameters P and p are equivalent to the order of the seasonal
AR and the order of non-seasonal AR in the ARIMA model respectively and m is the
length of the season. An NNAR(5, 1, 4)12 model was identified for the passenger data.
This model contains a network with five input nodes, four hidden nodes and one lagged
seasonal input.

4.4. SVM model. In fitting the SVM model, the e1071 package in R written by [23]
was used to fit the time series for the passengers. The function tune.svm() allows for
the fitting of an SVM model and automatically tunes the model based on the intervals
provided for the different parameters of the SVM model. The automatically tuned model
parameters for the series are 1, 0.08 and 0.1 for the Cost, Gamma and Epsilon, respectively.

A method, seasonal support vector regression, for forecasting time series data with a
seasonal component was suggested by [24]. The modelling procedure begins by splitting
the time series into its basic components. The time series is then deseasonalized and an
SVM model is fitted to the deseasonalized time series. In order to select optimal values
for the parameters, a hybrid genetic algorithm and tabu search called GA/TS are used.
Finally, the forecasts are produced by combining the forecasts from the SVM with the
seasonal estimates from the decomposition method.

In order to account for seasonality in the SVM model fitted to air passengers, a similar
methodology is followed, but instead of using the GA/TS method for fitting the SVM,
the e1071 package was used to fit the deseasonalized time series. The air passengers time
series was decomposed by means of seasonal and trend decomposition using Loess (STL).
The R function mstl() was used to decompose the time series. Using the tune.svm(), the
values of the parameters were calculated as 1, 10 and 0.1 for Cost, Gamma and Epsilon,
respectively.

4.5. Regression model with ARIMA errors. To fit a regression model with ARIMA
errors, the same function used for fitting a normal ARIMA model was used. In addition,
an argument xreg was used to allow for the fitting of the regression part of the model. The
argument takes on a vector of inputs equal in size to the time series under investigation.
A vector of length 94 was generated, which should be of the same size as the time series
under investigation. This new time series was used in the argument xreg of the function
for the time series under investigation.

A regression model with ARIMA(0, 0, 1)(1, 0, 0)12 errors was identified with an intercept
of 2 589 233.25, a slope of 7 366.131, an MA coefficient of 0.4125 and a seasonal AR
coefficient of 0.8687 as parameters. This model indicates that the error series is seasonal
and there is no differencing.

4.6. Performance of the methods. Table 2 shows the performance of the different
models on both the training set and test set.

Based on the value of RMSE, the selected ANN model produced the minimum of 33 035
for the training set and performs best on the data series. This model is followed by the
seasonal SVM model with an RMSE value of 46 472. The ARIMA(0, 1, 1)(0, 1, 1)12 model
followed, with an RMSE value nearly twice the minimum value at 59 604. The original
SVM model came in last with an RMSE value of 157 773. This is more than four times
the RMSE value of the best performing model. The ordering of the models based on the
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Table 2. Performance measures of the fitted models

Method Data set ME RMSE MAE MPE MAPE

ARIMA
Training set 5 957.163 59 604.470 46 273.640 0.184 1.585
Test set 21 071.795 91 643.330 81 043.460 0.566 2.503

ANN
Training set −37.640 33 034.940 27 062.850 −0.029 0.936
Test set 59 915.340 96 902.880 76 799.790 1.757 2.299

SVM
Training set 40 732.090 157 772.900 122 457.300 1.167 4.312
Test set 98 522.520 126 370.700 103 313.600 2.958 3.124

Seasonal SVM
Training set 333.694 46 472.390 38 307.370 −0.014 1.338
Test set 78 768.870 130 327.000 104 566.900 2.294 3.174

Regression with
ARIMA errors

Training set −1 457.905 79 724.410 65 069.170 −0.168 2.280
Test set 13 201.449 83 800.700 73 454.360 0.296 2.266

best RMSE is the ANN, seasonal SVM, ARIMA(0, 1, 1)(0, 1, 1)12, regression model with
ARIMA(0, 0, 1)(1, 0, 0)12 errors and SVM.
The same performance and ordering can also be observed for MAE. The absolute errors

remained high for SVM and low for the ANN model. Looking at MAPE, the chosen ANN
model achieved a value below a percentage point on the training set, followed by the
seasonal SVM model with MAPE of 1.34%. All the models produced values of MAPE
that are below 5%.
For the test set, the RMSE for the regression model with ARIMA(0, 0, 1)(1, 0, 0)12 errors

produced the minimum value of 83 801 and performs best compared to the other models.
This was followed by the ARIMA(0, 1, 1)(0, 1, 1)12 model with an RMSE value of 91 643.
Similar to the training set, the original SVM produced the worst results on the test set
compared to the other methods with an RMSE value of 126 371 for the model fitted to
the test set of the original data and 130 327 on the seasonal SVM model.
The performance of the models when compared using the value of the MAE shows that

the regression model with ARIMA(0, 0, 1)(1, 0, 0)12 errors remained the best method, with
an MAE of 73 454. This regression model was followed closely by the ANN method, with
an MAE of 76 800. The chosen SVM model and seasonal SVM model were placed last
with the highest MAE values.
The regression model with ARIMA(0, 0, 1)(1, 0, 0)12 errors remained the best model on

all the measures considered, producing an MAPE of 2.266, a minimum compared to the
other models. This model was closely followed by the ANN model, with an MAPE of
2.299. The SVM performed the worst on all the measures considered here, even though
the model performance improved on the test set compared to the training set.
Although the worst performing model, the selected SVM model is the only model that

showed improved results on the test set when compared to the training set. All other
models showed degrading performance on the test set. For example, the selected ANN
model performed better on the test set but could not replicate this performance on the
test set.

4.7. Bagging the models. The models were bagged to see if their performances can
be improved on the test set. Ten different time series were created by using a bootstrap
method on the training set. Thereafter a forecasting model was fitted to each time series
for a given forecasting method and grouped by forecasting method. Forecasts were then
produced for each time series using the fitted model. Finally, the mean of the forecasts
for each month was taken as the forecast for the month. This new time series, consisting
of mean forecasts, was compared with the test set. Table 3 shows the performance of the
bagged models on the test set.
A comparison of the bagged models with regard to the MAPE shows that the bagged

ANNmodel performed better than the other bagged models, with an MAPE of 2.384. This
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Table 3. Performance measures of the fitted bagged model on test data

Model ME RMSE MAE MPE MAPE
Bagged ARIMA 92.573 89 638.360 81 783.800 −0.096 2.537
Bagged ANN 44 257.040 94 523.970 78 785.180 1.262 2.384
Bagged SVM 50 870.190 212 405.000 165 450.700 1.164 5.060

Bagged seasonal SVM 86 413.900 134 573.000 108 178.400 2.527 3.272
Bagged regression model

with ARIMA errors
2 664.602 89 255.480 80 148.470 −0.036 2.476

was followed by the bagged regression model with ARIMA errors, which had an MAPE
of 2.476. The bagged model that performed the worst on the value of the MAPE was
the SVM model. This model produced an MAPE of 5.06. Interestingly, all the models
still performed worse than their original counterparts on this measure of performance.
The same order of performance was also observed for the MAE. The bagged ANN model
produced the lowest MAE of 78 785.

On the values of the RMSE, the bagged regression model with ARIMA errors performed
better than the other bagged models with an RMSE value of 89 255. This was closely
followed by the bagged ARIMA model which produced an RMSE value of 89 638. The
bagged regression model with ARIMA errors also produced the best MPE absolute value
of 0.036 followed again by the bagged ARIMA model with an MPE absolute value of
0.096.

5. Conclusions. The fitted models were explored and compared using forecast accuracy
measures such as the ME, RMSE, MPE, MAE and MAPE. The artificial neural network
NNAR(5, 1, 4)12 model outperformed the other models on the training data, performing
better than the other models on most of the accuracy measures used. This model was
followed by ARIMA(0, 1, 1)(0, 1, 1)12. The regression model with ARIMA(0, 0, 1)(1, 0, 0)12
errors came out third overall. Based on the performance of the models on the test set,
the regression model with ARIMA(0, 0, 1)(1, 0, 0)12 errors performed better than the oth-
er methods on the air passenger data. The ARIMA(0, 1, 1)(0, 1, 1)12 model again came
second, which shows the consistency of the ARIMA method in general. The SVM models
performed worst on this data set according to the accuracy measures despite being the
only models that showed an improved performance on the test set. Although the selected
ANN model was the best on the training data, it failed to emulate that performance on
the test set. Consequently, the SVM and ANN models failed to perform better than the
regression with ARIMA errors and the ARIMA models.

A bagging procedure using a moving block bootstrap was also applied to the time series
in order to improve the performance of the different forecasting methods. There was an
improvement in the performance of the bagged ANN and ARIMA models when the values
of the RMSE and MPE were compared, but these results did not influence the order of
performance of the original models. It is therefore evident that bagging helps to reduce
bias in a forecasting model.

For this study, it can be concluded that the traditional statistical forecasting methods
(ARIMA and regression model with ARIMA errors) performed better than the machine
learning methods (ANN and SVM) on this data set. This is in line with a study conducted
by [11]. The application of the forecasting methods to data sets in other sectors might
result in other methods performing better.

Future studies on the development of a comprehensive framework that guides the iden-
tification of methods to be considered for evaluation will enhance the field of forecasting.
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