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Abstract. Electroencephalogram (EEG) signals have an important role in identifying
real human feelings or emotions to develop a Brain-Computer Interface (BCI) system.
Emotion recognition systems can be applied to medical care and entertainment to over-
come mental illness to relieve negative emotions to reduce suicide attempts. This study
proposes a deep learning-based EEG human emotion classification system and applies
different feature extraction methods. In the proposed system, 2-second segments of EEG
are decomposed using Discrete Wavelet Transform (DWT) and Fast Fourier Transform
(FFT) to obtain several sub-signals and extract their features. A Convolutional Neural
Network (CNN) and Deep Neural Network (DNN) are trained and validated using these
features to classify two different levels of arousal and valence. The system was evaluat-
ed and achieved the best performance for arousal and valence with 96.84% and 97.18%
average accuracy, respectively. The results show that the use of data augmentation and
feature extraction methods plays an important role in deep learning-based EEG human
emotion classification systems and provides excellent performance. In addition, deter-
mining the number of channels can affect the performance of the classification system.
Keywords: EEG, Emotion recognition, Affective state, DWT, FFT, CNN, DNN, DEAP
dataset

1. Introduction. Emotional states relate to various kinds of human feelings, thoughts,
and behaviors that affect the ability to act rationally, such as decision making, percep-
tion, and human intelligence. Emotion recognition helps cope with mental illness and
is also important in various applications such as BCI, medical care, and entertainment.
Therefore, emotion recognition studies using emotional signals enhance the BCI system
as an effective subject for clinical applications and human social interactions [1]. Emotion
recognition can help provide appropriate therapy to relieve a person’s negative emotions
to avoid attempting suicide. According to the World Health Organization (WHO), suicide
was the second-highest death rate among those aged 15-29 in 2016 [2] and 1.4% of deaths
in the world were caused by suicide in 2017 [3]. Researchers believe that the state of the
brain can change according to human emotions or feelings so that EEG is suitable for
detecting human emotions [4]. EEG has the advantage of having high speed in getting
brain signals, non-invasive, meaning that it does not need to open the scalp, and does not
cause pain to the subject so that EEG can detect real human emotions [5].

Over the years, numerous data preprocessing, feature extraction, and feature selec-
tion methods applied to classifying human emotions based on EEG signals have been
proposed, including Empirical Mode Decomposition (EMD) [6], Surface Laplacian (SL)
Filtering [7], DWT with “db4” wavelet function [7,8], FFT [9] and minimum-Redundancy-
Maximum-Relevance (mRMR) [10]. Then the features obtained are Absolute Logarithmic
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REE (ALREE) [7], Power Spectral Density (PSD) [11-14], Power Asymmetry [11,12], Co-
variate shift adaptation of PCA [14], Frontal Asymmetry [9], statistical features [8,10,15]
and energy features [6,8] used for classification with machine learning and deep learning.
The modified Kohonen neural network that has been used for the classification of human
emotions such as angry, happy, relax, and sad gave the best performance of human emo-
tion classification compared to previous studies [15]. According to [15], different classifiers
and feature sets can be used to improve system performance. Recent studies have used
deep learning classification methods which can provide better classification performance
than using machine learning. Deep learning and neural networks have an extraordinary
ability to solve problems in image recognition, speech recognition, and natural language
processing [14] which could effectively mirror the emotional affective states of subjects.
Although deep learning already has feature extraction where the reduced feature set can
then summarize most of the information contained in the original feature set, feature ex-
traction methods such as DWT and FFT can be applied to analyzing the EEG signal in
detail and locally enabling improved classification performance. In addition, the different
combinations of the number and location of channel usage can also make it possible to
improve classification performance.
This study aims to provide academic contribution by adding feature extraction methods

such as DWT and FFT even though deep learning already has feature extraction. In
addition, different feature sets and different combinations of the number and location of
channel usage used in this study are expected to improve the classification performance of
previous studies. In summary, the proposed method is to use DWT db4 with various levels
and FFT as feature extraction to get statistical features and Power Spectral Intensity
(PSI) features. Then, the obtained features are used as input to deep learning models
such as CNN and DNN to classify two different levels of arousal and valence. Finally,
performance comparisons will be made against several experiments based on the number
of channels used, feature extraction methods, and deep learning models.
The rest of this paper is organized as follows: Section 2 lists literature and works

related to the study; Section 3 elaborates the proposed system and methodology; Section
4 discusses the evaluation results; Section 5 concludes the study and offers suggestions for
future works.

2. Literature Review and Related Works.

2.1. Emotion models. Most dimensional models combine arousal and valence. Valence
refers to the level of “pleasure” associated with an emotion. These range from unpleasant
(e.g., sad, and stressed) to pleasant (e.g., happy, and delighted). While arousal refers to
the strength of the emotions experienced. This arousal occurs along a continuum and
can range from inactive (e.g., disinterested, and bored) to active (e.g., alert, and excited)
[16]. The emotional quadrant based on the valence and arousal models is shown in Figure
1.

2.2. Electroencephalogram (EEG). EEG is a recording of electrical signals derived
from human brain signals. The electrical signal is generated naturally over a while and
received by many channels or electrodes. EEG wave signals are classified into 5 wave
types including delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and
gamma (30-40 Hz) which describe different emotional states [18]. Delta appears when
someone is fast asleep. Delta signals can also indicate physical abnormalities in the brain.
Theta appears in someone who is experiencing emotional stress, especially frustration
or disappointment. Alpha is a relaxed state of mind. Beta is a brain wave that usually
occurs when a person is actively thinking, actively concentrating, or focusing on solving a
problem. Gamma is a brain wave that occurs when a person experiences very high mental
activity, a state of extreme panic or fear in a state of full awareness.
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Figure 1. Quadrant of emotions based on arousal and valence [17]

2.3. Discrete Wavelet Transform (DWT). The ability to capture frequency informa-
tion during brain activity is difficult to obtain [19]. For this problem, Wavelet Transform
(WT) is used, which is considered as a technique that uses multi-resolution analysis that
divides the signal into different frequency spectrums. In addition, WT combines the high
and low-frequency spectrum. DWT is efficient due to the frequency filter bank, which is
used to remove unwanted frequencies and decompose the signal into multiple levels [20].
The main characteristic of DWT is its resolution of frequency and time that leads to the
optimal state for time-frequency resolution [21]. The process begins with the first signal
that enters the band-pass filter. A band-pass filter is a combination of a High-band-Pass
Filter (HPF) and a Low-band-Pass Filter (LPF) to obtain the desired result. This pro-
cess is categorized as the first level, which includes two corresponding coefficients: one is
Approximation (A) and the other is Detailed (D). In each run, the frequency resolution is
doubled using a filter as it parses and reduces the time complexity in half. After getting
those coefficients, then apply the statistical formulas to getting statistical features. Sta-
tistical features include Mean Absolute Value (MAV), Average Power (AVP), Standard
Deviation (SD), Variance, Mean, Root Mean Square (RMS), and Skewness (Pearson’s
Coefficient).

2.4. Fast Fourier Transform (FFT). FFT is an algorithm for calculating discrete
Fourier transform and its inverse [9]. FFT converts data in the time domain to the fre-
quency domain and vice versa. The FFT method works recursively by dividing the original
vector into two parts, calculating the FFT of each part, and then combining them. One
of the features that can be obtained from FFT is PSI by using the “bin power” function
from the PyEEG library [22].

2.5. Related works. Most studies, such as [6-8,10-13], apply the feature extraction
method and use a machine learning classifier such as K-Nearest Neighbor (KNN), Naive
Bayes, and Support Vector Machine (SVM). There are only a few studies that use deep
learning classifiers such as [9,14,15]. Each study has a different purpose of detecting emo-
tions, based on different emotional classes (e.g., happy, and sad) and levels of arousal and
valence (e.g., low, and high). Each study uses a different number of subjects and chan-
nels. Although [7] achieved 83.26% average accuracy in classifying five emotion classes
(disgust, happy, surprise, fear, and neutral) by using DWT+KNN and 62 channels, they
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have not used a standardized dataset based on electrode placement and EEG data collec-
tion methods. They recruit students to be research subjects. Recently, most studies using
the DEAP dataset were collected by [11]. The recent study whose detection is similar
to our study is [6] that detects two different levels of emotion based on the dimensions
of arousal and valence. They used the first difference of time series (IMF1), the first
difference of phase, and the normalized energy features and then classified using SVM
and achieved 69.10% and 71.99% average accuracy for valence and arousal, respectively
using 8 channels. However, the disadvantage of the SVM method is that high-dimensional
data requires high computerization capabilities to train the model and requires complex
feature engineering. Unlike SVM, the deep learning method such as CNN is very suitable
for high-dimensional data because CNN can take advantage of natural signals such as
local connections, shared weights, pooling, and uses multiple layers which makes it pos-
sible to train high-dimensional data using minimum computational capabilities. In the
most recent study, [15] detects four classes of emotions (angry, happy, relaxed, and sad)
that achieved 87% average accuracy by using Modified Kohonen Neural Network I and
statistical features which is better than the previous studies. However, a Kohonen Neural
Network can also be called a self-organized map which is a single layer, unsupervised,
feed forward artificial neural network which only uses one hidden layer. The use of deep
learning with a large number of hidden layers such as DNN and CNN can improve the
transmission and processing of information between layers, making it possible to increase
the precision and versatility of the number of features and improve prediction accuracy.

3. Proposed System and Methodology. This study proposes combining feature ex-
traction methods such as DWT and FFT with deep learning for the classification of two
different levels of arousal and valence. Figure 2 displays the substantial flow of the pro-
posed system. Initially, the number of subjects and channels that will be used in the
experiment is determined, and then an effective window size of 2-second was used to pro-
cess data augmentation to increase the amount of EEG data. Then, feature extraction
methods such as DWT or FFT are applied to decomposing signals, and calculations are
performed to obtain statistical or power features, respectively. All feature vectors are
subsequently preprocessed and resampled into training and testing sets. CNN and DNN
are trained and validated by utilizing the training set. This CNN and DNN are used to
predict the labels of every feature vector within the testing set. The predicted labels are
compared with the actual ones to compute several performance metrics for evaluation
purposes. Meanwhile, the methodology to develop the system can be divided into five
core stages.

Figure 2. A flowchart summarizing the proposed system

3.1. Dataset collection. In this study, data was collected from the DEAP dataset web-
site (http://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html) [11]. The DEAP
dataset contains recordings of EEG data from 32 participants using 32 channels, which
was performed when participants watched 40 music videos. When they watched the mu-
sic video, participants were asked to rate the level of arousal and valence using the Self-
Assessment Manikin (SAM) which is a technique to measure the level of arousal and
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valence of a person [23]. This study mapped the scales 1-9 into two levels of each state of
valence and arousal according to the SAM rating. The valence scale of 1-5 is mapped to
negative, and 6-9 to positive, respectively. The arousal scale of 1-5 is mapped to passive,
and 6-9 to active. In this study, four subjects were selected: s01, s02, s03, and s04. Then,
several channels were selected: 32 channels, 5 channels (Fz, AF3, F3, AF4, and F4) [9],
and 4 channels (Fp1, Fp2, F3, and F4) [8].

3.2. Dataset preprocessing. Preprocessed DEAP dataset [11] is used in this study
which the process consists of the following: The data were downsampled to 128 Hz; EOG
artifacts were removed; A bandpass frequency filter from 4.0-45.0 Hz was applied; The
data was averaged to the common reference; The EEG channels were reordered so that
they all followed the Geneva order as above; The data was segmented into 60-second
trials and a 3-second pre-trial baseline removed; Finally, the trials were reordered from
presentation order to video (Experiment id) order. Each participant file contains two
arrays, namely data and labels shown in Table 1. In this study, only arousal and valence
labels were used.

Table 1. Contents of each participant file

Array name Array shape Array contents
data 40 × 40 × 8064 video/trial × channel × data
labels 40 × 4 video/trial × label (valence, arousal, dominance, liking)

Then to increase the amount of data, data augmentation is applied by using an effective
window size of 2 seconds for the data augmentation process. Slice raw data for 2 seconds,
at 0.125-second intervals from each channel. Every 0.125 seconds update once. The process
of data augmentation is shown in Figure 3.

Figure 3. Block diagram of the data augmentation process

3.3. Feature extraction. Each EEG segment was subjected to the feature extraction
stage. Initially, every 2-second segment of EEG was decomposed using DWT or FFT,
producing several wave signals including delta, theta, alpha, beta, and gamma. DWT
with the mother wavelet “db4” with levels 3, 4, and 5 were used. The feature extraction
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Figure 4. A flowchart showing the DWT process (levels 1-5)

process with DWT is shown in Figure 4. DWT db4 level 5 decomposed the EEG signal
into several wave signals: D1 (64-128 Hz), D2 (32-64 Hz), D3 (16-32 Hz), D4 (8-16 Hz),
D5 (4-8 Hz), and A5 (0-4 Hz). While in the FFT feature extraction method, the EEG
signal was decomposed into several wave signals: theta (4-8 Hz), alpha (8-12 Hz), low
beta (12-16 Hz), high beta (16-25 Hz), and gamma (25-45 Hz).
After the implementation of DWT, the coefficients were calculated using statistical

function formulas so that several statistical features will be obtained: MAV, AVP, SD,
Variance, Mean, RMS, and Skewness. Meanwhile, in the FFT process, the “bin power”
function is used to get the PSI features of each sub-signal. Finally, the features are com-
bined to form a feature vector so that it becomes a feature set. The statistical and power
feature sets were obtained from the DWT and FFT processes, respectively.

3.4. Feature preprocessing and resampling. The value of the valence and arousal
labels ranges from 1-9, so it is necessary to process the label to make it suitable for binary
classification. To distinguish between arousal and valence levels, values 1-5 are assigned
a value of “0” which means low, and values 6-9 are assigned a value of “1” which means
high. Then, the normalization process is needed to modify the values in the variables so
that they can be measured on a common scale. The standard scaler has been used to
normalize the features making each feature have a mean value of 0 and a variance of 1.
The standard scaler removes the mean and scales to the unit variance. Normalized feature
sets were resampled by splitting them into training and testing sets with a ratio of 80
against 20.

3.5. Training and validation. In this study, deep learning models such as CNN and
DNN are used which use training sets to classify two different levels of arousal and valence.
The CNN and DNN architectural models were inspired by [24] and [9], respectively. Then
modify the deep learning architecture model to fit our experiments. Table 2 shows the
hyperparameter values used in the experiment. Tables 3 and 4 show the architecture
of the CNN and DNN models used in the experiment, respectively. While most values
were determined according to best practices, adding additional layers such as dropout
and pooling layer is the process of preventing overfitting and speeding up the learning
process.

4. Results and Discussion. Deep learning received every feature vector within the
testing set and predicted their corresponding labels. The predicted labels were compared
with the actual ones to determine the number of true positives TP, false positives FP, false
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Table 2. Hyperparameter values in the experiments

Hyperparameter Values

batch size
[32, 256]
32 batch size is only for experiments that do not use data
augmentation and feature extraction methods (Raw EEG data).

epochs [50]
optimizer [adam] with default learning rate = 0.001

loss [binary crossentropy]
activation function [relu, sigmoid]
validation data (x test, y test)

metrics [accuracy]

input shape
Raw EEG data = (number of channels, 8064 data)
DWT = number of channels ∗ (level + 1) ∗ 7 statistical features
FFT = number of channels ∗ 5 bands ∗ 1 power feature

Table 3. CNN model architecture

# Layer Details
1 Conv1D filter = 128, kernel size = 15, padding = ‘same’, activation = ‘relu’
2 Conv1D filter = 128, kernel size = 10, padding = ‘same’, activation = ‘relu’
3 Conv1D filter = 128, kernel size = 5, padding = ‘same’, activation = ‘relu’
4 MaxPooling1D pool size = 2, strides = 2
5 Flatten
6 Dense units = 64, activation = ‘relu’
7 Dropout drop rate = 0.2
8 Dense units = 32, activation = ‘relu’
9 Dropout drop rate = 0.2
10 Dense units = 16, activation = ‘relu’
11 Dropout drop rate = 0.2
12 Dense units = 1, activation = ‘sigmoid’

Table 4. DNN model architecture

# Layer Details
1 Dense units = 2184, activation = ‘relu’
2 GaussianNoise stddev = 0.005
3 BatchNormalization
4 Dropout drop rate = 0.2
5 Dense units = 1310, activation = ‘relu’
6 GaussianNoise stddev = 0.005
7 BatchNormalization
8 Dropout drop rate = 0.5
9 Dense units = 786, activation = ‘relu’
10 GaussianNoise stddev = 0.005
11 BatchNormalization
12 Dropout drop rate = 0.5
13 Dense units = 472, activation = ‘relu’
14 GaussianNoise stddev = 0.005
15 BatchNormalization
16 Dropout drop rate = 0.5
17 Dense units = 1, activation = ‘sigmoid’
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Figure 5. The average accuracy performance of arousal classification (%)

Figure 6. The average accuracy performance of valence classification (%)

Table 5. Best performance results based on the number of channels used

Label
Deep

learning
Feature

extraction
Number of
channels

Precision
(%)

Recall
(%)

F1-Score
(%)

Accuracy
(%)

Arousal CNN FFT 32 96.95 96.57 96.74 96.84

Valence DNN
DWT db4
(level 3)

32 97.15 96.79 96.96 97.18

Arousal CNN FFT 5 88.25 87.83 88.02 88.40
Valence CNN FFT 5 89.83 90.33 90.06 90.69
Arousal CNN FFT 4 86.95 86.73 86.83 87.22
Valence CNN FFT 4 87.76 88.54 88.11 88.81

negatives FN, and true negatives TN for every class. Based on these statistics, several
performance metrics were computed: precision, recall, f1-score, and accuracy. Figures 5
and 6 summarize the system’s classification performance, while Table 5 summarizes the
best performance results for the classification of arousal and valence labels based on the
number of channels used.
We have done many experiments to compare performance such as the number of chan-

nels used, feature extraction method, and deep learning model. The results show that the
number of channels affects the performance of the classification system. The more chan-
nels used, the better the classification performance. A small number of channels turn out
to get a good classification performance as well. Based on Figures 5 and 6, the applica-
tion of data augmentation and feature extraction methods provides a better classification
performance than directly using raw data. This can happen due to the implementation
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Table 6. Comparison of various studies using DEAP dataset

Research Details

[11]

Features: Power Spectral Density (PSD), Power Asymmetry;
Classifier: Näıve Bayes;
Detect: Two different levels of valence, arousal, and liking (low/high);
Result: 57.0% for valence, 62.0% for arousal

[12]

Features: Power Spectral Density (PSD), Power Asymmetry;
Classifier: Bayes;
Detect: Two/three classes per dimension valence and arousal;
Result: 53.4% for two classes, 51.0% for three classes

[13]

Features: Power Spectral Density (PSD);
Classifier: Ontological Model;
Detect: Two classes per dimension valence and arousal;
Result: 75.19% for valence, 81.74% for arousal

[14]

Features: Power Spectral Density (PSD),Covariate shift adaptation of PCA;
Classifier: DLN-50 with stacked autoencoder (SAE);
Detect: Three different levels per dimension valence and arousal;
Result: 53.42% for valence, 52.03% for arousal

[10]

Features: Statistical features, band power, Hjort parameters, fractal dimension;
Classifier: Kernel;
Detect: Three classes per dimension (valence and arousal);
Result: 60.7% for valence, 62.33% for arousal

[8]

Features: Wavelet energy, wavelet entropy, modified energy, statistical features;
Classifier: SVMs;
Detect: Four classes of emotion (HVHA, HVLA, LVHA, LVLA);
Result: 83.87%

[6]

Features: The first difference of time series (IMF1), the first difference of phase,
the normalized energy;
Classifier: SVM;
Detect: Two different levels per dimension valence and arousal (low/high);
Result: Accuracy 69.10% for valence and 71.99% for arousal, F1-Score 73.74%
for valence and 77.69% for arousal

[9]

Features: PSD, Frontal Asymmetry;
Classifier: DNN;
Detect: Two classes per dimension valence and arousal;
Result: Accuracy: 82.5%, Recall: 82.5%, Precision: 68.0%, Misclassification
Rate: 17.5%

[15]

Features: mean, variance, standard deviation, skewness, kurtosis, mobility,
complexity (statistical features);
Classifier: Modified Kohonen Neural Network I;
Detect: Four classes of emotion, i.e., Angry, Happy, Relax, and Sad;
Result: 87.0%

Proposed
method

Features: MAV, AVP, variance, SD, mean, RMS, Skewness, PSI;
Classifier: CNN, DNN;
Detect: Two different levels per dimension valence and arousal (low/high);
Result: 97.18% for valence (DWT + DNN), 96.84% for arousal (FFT + CNN)

of data augmentation which increases the amount of data by dividing the data by the
window size of 2 seconds. Then proceed with the application of the feature extraction
method to analyze and extract important features from the window size of 2-seconds da-
ta. The CNN model turned out to be more suitable to be applied to FFT and the DNN
model was more suitable to be applied to DWT.

The classification accuracy of our model was also compared to other previous studies
that use similar approaches, where they used the same dataset but different classification
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techniques, features, and detections as shown in Table 6. The comparison shows that
our proposed method exhibits very promising results when dealing with varying sizes of
datasets and different detections of emotions. For example, the same number of different
levels of valence and arousal, an improvement of 40.18% (valence) and 34.84% (arousal),
and also 28.08% (valence) and 24.85% (arousal) was achieved with our proposed method
when compared to [11] and [6], respectively.

5. Conclusion and Future Works. This study proposes a novel emotion classification
system using CNN and DNN-based EEG combined with feature extraction methods such
as DWT and FFT. The system can classify two different levels per dimension of arousal
and valence to recognize a person’s emotions. The method proposed in this study has a
better performance compared to previous studies that have the same type of detection.
The best performance was obtained for the classification of two different arousal and
valence levels: 96.84% and 97.18% average accuracy; 96.74% and 96.96% average f1-score;
96.57% and 96.79% average recall; 96.95% and 97.15% average precision, respectively.
The results show that the data augmentation and feature extraction methods get better
performance results compared to directly using raw data to be classified in deep learning.
In addition, the number of channels can affect classification performance. Future work
of this research will improve the system by exploring the recent deep learning models, or
using different feature extraction methods and feature sets. In addition, the use of the
different datasets, numbers, and locations of channels can be applied to future work for
the classification of human emotions.
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