
ICIC Express Letters ICIC International c©2022 ISSN 1881-803X
Volume 16, Number 11, November 2022 pp. 1185–1191

DISTRIBUTED PROCESSING OF DEEP LEARNING

INFERENCE MODELS FOR MALICIOUS URL DETECTION

Hyojong Moon1, Siwoon Son2 and Yang-Sae Moon1,∗

1Department of Computer Science
Kangwon National University

1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea
moonhyojong@kangwon.ac.kr; ∗Corresponding author: ysmoon@kangwon.ac.kr

2CybreBrain Section
Future and Basic Technology Research Division

Electronics and Telecommunications Research Institute (ETRI)
218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea

siwoon.son@etri.re.kr

Received December 2021; accepted March 2022

Abstract. Stacking used for improving the accuracy of deep learning models incurs a
long inference time due to its high complexity, and it further increases the latency sig-
nificantly in data stream environments. In particular, the long latency is a severe prob-
lem in detecting malicious URLs since the real-time detection is a critical requirement.
In this paper, we propose a distributed processing technique that efficiently processes
a stacking-based inference model of detecting malicious URLs in data stream environ-
ments. Distributed algorithms may vary greatly in processing performance depending on
their configurations, so we propose four different configurations: Independent Stacking,
Sequential Stacking, Semi-Sequential Stacking, and Stepwise-Independent Stacking. We
then evaluate the four configurations by comparing the latency and resource usage occur-
ring in processing URL streams. Experimental results show that Stepwise-Independent
Stacking, which has the property of both independent and sequential executions, is the
most efficient configuration by providing the shortest latency.
Keywords: Distributed computing, Deep learning, Stacking, Malicious URL detection

1. Introduction. Recently, the ensemble technique [1] is widely used to improve the
accuracy of deep learning models [2, 3]. Representative ensemble techniques include bag-
ging, boosting, and stacking. Among them, we focus on stacking that retrains a new
model using the result values predicted by multiple models as input features. Howev-
er, the stacking-based model has the high computational complexity due to the use of
multiple models, which greatly increases the inference time. This long inference time also
causes long latency in data stream environments.

Since the data stream occurs quickly and continuously, the latency increases as time
passes. In order to solve this problem, we use real-time distributed processing systems,
and representative ones include Apache Storm [4], Spark [5], and Flink [5]. However, since
a stacking-based model takes a long time to get the inference result, it will still incur the
long latency even in the distributed processing system.

In this paper, we address how to efficiently process a stacking-based inference model of
detecting malicious URLs in a data stream environment. In particular, we propose four
distributed processing configurations using Apache Storm to efficiently handle a complex
stacking model. The proposed configurations are Independent Stacking (IS ), Sequential
Stacking (SS ), Semi-Sequential Stacking (SSS ), and Stepwise-Independent Stacking (SIS ).

DOI: 10.24507/icicel.16.11.1185

1185



1186 H. MOON, S. SON AND Y.-S. MOON

According to the experimental results on latency and resource usage, the SIS configura-
tion shows the best performance by executing bolts, Storm’s components, independently
and at the same time sequentially.
Contributions of the paper can be summarized as follows. First, we present four different

stacking models, each of which can detect malicious URLs in a distributed way. Second,
we propose how to implement the stacking models in Apache Storm using its components
of spouts and bolts. Third, through various actual experiments, we show that Stepwise-
Independent Stacking is the best stacking model in detecting malicious URLs in the
distributed environment.
The rest of the paper is organized as follows. Section 2 describes the related work

on Apache Storm and stacking techniques. Section 3 presents the proposed models for
distributed processing of malicious URL detection. Section 4 shows the results of experi-
mental evaluation. Finally, Section 5 concludes the paper.

2. Related Work. Apache Storm [4] is an open source distributed framework developed
by Twitter. A topology defines a series of input-processing-output tasks required for han-
dling data streams in Storm [6]. This topology consists of a number of spouts and bolts.
The spouts receive data, convert it into a tuple, which is the data type used by Storm,
and deliver it to the bolts. The bolts receive tuples from the spouts or the previous bolts,
and process their tasks. They then transmit the results to the next bolts, or send the
results to the output or storage device [4, 6].
Stacking [1] first trains different types of base models, and then retrains a new stacking

model using predicted values of the base models as input features. Unlike other ensemble
techniques, it combines different types of independent but complete models. However,
since the stacking-based model combines multiple independent models, its inference com-
plexity is significantly higher than that of a single model. This high complexity causes a
long inference time, and accordingly, incurs a long latency in a data stream environment.
In this paper, we first propose a stacking model that performs malicious URL detection.
We then present and evaluate four different configurations for distributed processing of
this stacking model.

3. Distributed Processing of Malicious URL Detection. Figure 1 shows the struc-
ture of the proposed malicious URL detection model exploiting the stacking technique.
In this stacking model, we use three base models: CNN (Convolutional Neural Network)
[7], LSTM (Long Short-Term Memory) [8], and GRU (Gated Recurrence Unit) [9] for
malicious URL detection. As shown in the figure, we train the stacking model composed
of the Fully-Connected layer (FC layer) by using the predicted values of the three base
models of CNN, LSTM, and GRU.

Figure 1. Stacking model of malicious URL detection

Figure 2 shows the detailed structures of CNN, LSTM, and GRU used for stacking.
First, the CNN model [7] uses 1DCNN to classify URLs, which are one-dimensional se-
quence data. It consists of feature extraction and classification steps as shown in Fig-
ure 2(a). Second, the LSTM model [8] consists of LSTM, Dropout, and FC layers as



ICIC EXPRESS LETTERS, VOL.16, NO.11, 2022 1187

Figure 2. Base models used in malicious URL detection

shown in Figure 2(b). We use 128 as the output dimension of the LSTM layer and 0.5
as the dropout ratio to prevent overfitting as in [8]. Third, the GRU model [9] has less
computational amount than LSTM, and is composed of GRU, Dropout, and FC layers.
Figure 2(c) shows the GRU model, which is very similar to the LSTM model, where we
use 128 and 0.5 as the training parameters same as in the LSTM model. The stacking
model integrates and retrains the three predicted values output from these CNN, LSTM,
and GRU models. The FC layer in the stacking model of Figure 1 combines three models
and uses ReLU as an activation function.

We propose four different configurations to process the stacking model in a distributed
manner. IS (Independent Stacking) separates the base models in Apache Storm and runs
them independently to reduce the latency required to classify URL streams. Figure 3(a)
shows the internal configuration of IS. First, URLs are inputs through spout, and the
spout transmits the URL data to CNN, LSTM, and GRU bolts. Next, each inference bolt
runs its base model independently, and transmits the result to the next FC layer bolt.
Finally, the FC layer bolt performs inference again on the three prediction values, and
provides the final result through the output bolt. However, each inference time required



1188 H. MOON, S. SON AND Y.-S. MOON

Figure 3. Configurations of the proposed stacking models

for CNN, LSTM, and GRU bolts is different, so the time for the predicted values to arrive
at the FC layer bolt is also different. Thus, we need an additional operation to map each
prediction value to the same URL data. That is, the FC layer bolt needs to wait while
mapping the predicted values, and proceeds inference after completing the mapping.
SS (Sequential Stacking) tries to reduce network communication by sequentially exe-

cuting all inference models in one bolt. Instead, by increasing the parallelism of bolts, it
reduces the latency to classify the URL stream. Figure 3(b) shows this sequential con-
figuration of SS. First, the input spout gets URL data and transmits it to the stacking
bolt. Next, the stacking bolt predicts the value by executing all base models as well as
the FC layer sequentially. Due to the sequential executions, each model needs to wait
until the predecessor model completes its inference. Finally, the output bolt provides the
prediction result.
SSS (Semi-Sequential Stacking) separates the FC layer from the base models to reduce

the waiting time of SS. Also, in order to reduce the latency, it increases the parallelism
of the bolts that execute the base models. Figure 3(c) shows the configuration of SSS.
First, the spout gets and transmits URL data to the bolt of handling base models. Next,
the model bolt executes three base models sequentially, and transmits the three predicted
values to the FC layer bolt. Finally, the FC layer bolt infers the final result, and the
output bolt returns the result.
SIS (Stepwise-Independent Stacking) runs all base models independently like in IS,

but it differs from IS in transmitting the predicted values of each model in sequence. This
approach aims at achieving both independent processing of multiple models and sequential
processing of data mappings. That is, SIS runs base models simultaneously like IS, and at
the same time, eliminates the time-consuming task of data mappings unlike IS. Figure 3(d)
shows this independent and sequential configuration of SIS. First, the input spout gets
URL data and transmits it to the next CNN bolt. Second, the CNN bolt processes the
URL data and transmits <CNN’s predicted result, URL data> to the LSTM bolt. Third,
the LSTM bolt processes the URL data and transmits <CNN’s & LSTM’s predicted
results, URL data> to the GRU bolt. Fourth, the GRU bolt processes URL data again
and transmits three predicted results to the FC layer bolt. Finally, the FC layer bolt
obtains the final result, and the output bolt provides the result.



ICIC EXPRESS LETTERS, VOL.16, NO.11, 2022 1189

4. Experimental Evaluation. In the experiment, we compare the latency and resource
usage for the proposed four configurations. The hardware platform is a distributed cluster
consisting of one Intel Xeon E5-2630V3 2.4GHz 8 Core server as a master node and eight
Intel Xeon E5-2630V3 2.4GHz 6 Core servers as slave nodes. Each node is equipped
with 32GB RAM and 256GB SSD, and uses CentOS as the operating system. The spout
generates URL data continuously and transmits it as input data.

4.1. Evaluation on the data generation speed. First, we compare the latency re-
quired to classify the URL stream at the fixed data generation speed. All four configura-
tions use one spout for input, one bolt for output, and six bolts for the inference model.
The spout generates and transmits the data evenly at a rate of 600 URLs per minute.
Figure 4(a) shows a graph comparing the latency to infer each URL in four configurations.
As shown in the graph, SIS shows the shortest latency all the time. This is because in the
case of SIS, each bolt operates independently, and the results are processed sequentially
and immediately. Next, IS shows the second shortest latency due to the waiting time
required for the mapping. SS and SSS have very low performance because three or four
models are executed sequentially within the same bolt. We note that SSS reduces the
latency compared to SS by separating the FC layer from the base models.

Figure 4. Latency comparison by the data generation speed

Next, we compare the latency and resource usage at each generation speed while in-
creasing the speed of generating URL data. We generate the data at a rate of 600 to 2000
URLs per minute. For all four configurations, we use one input spout, one output bolt,
and six inference bolts as in Figure 4(a). Figure 4(b) shows the comparison graph of the
latency at each generation speed. Like Figure 4(a), SIS shows the shortest latency at all
generation speeds. This is because SIS’s independent and sequential execution mecha-
nism makes predictions very fast, even when data generation speeds up. Next, IS shows
the second best performance, but the latency tends to increase as the generation speed
increases due to the data mapping operation. In particular, from the generation speed
of 1500 per minute, IS’s performance rapidly deteriorates, and the latency becomes even
longer than that of SS. This is because IS solves the long latency problem of sequential
execution with independent execution of base bolts, but it incurs a severe load on LSTM
and GRU bolts due to insufficient parallelism. SS and SSS show relatively long latency
compared to SIS and IS, and SSS becomes worse than SS as generation speed increases.

Figure 5 shows the resource usage in each configuration. First, the memory usage of
Figure 5(a) differs every time in the four configurations as the generation speed increases,
which seems to depend on the operating system situation and actually shows no mean-
ingful difference. The CPU usage of Figure 5(b) shows a trend of increasing gradually
in all configurations because the faster the generation speed, the greater the amount of
data to be processed. Among them, SS and SSS show low CPU usage in the relatively



1190 H. MOON, S. SON AND Y.-S. MOON

Figure 5. Resource usage comparison by the data generation speed

low generation speed. However, since SS processes all models within one bolt, the faster
the generation speed, the longer the latency. Next, IS that needs mapping and SIS that
needs to duplicate tuples show relatively high CPU usage. In the figure, SSS shows the
lowest CPU usage, since it does not require additional operations such as mapping or
duplicating tuples. However, not all configurations show significant differences in actual
usage numbers.

4.2. Evaluation on the parallelism. In this experiment, we increase the number of
bolts for each proposed configuration and compare the latency for different data generation
speeds. We change the number of bolts to 6, 12, 18, and 24, and increase the parallelism
by assigning the more bolts to the complex models that take a relatively long processing
time.
Figure 6 compares the latency as the parallelism increases. First, Figure 6(a) shows the

latency for the generation speed of 3000 per minute. As shown in the figure, SIS shows the
shortest latency even at high parallelism due to its independent execution and sequential
processing structure. IS still has a longer latency compared to SIS. This is because, even
if we increase the number of bolts, it still consumes a relatively long waiting time for the
mapping operation. SS and SSS also improve the performance as the parallelism increases,
but they cannot overcome SIS or IS due to the structure of sequentially executing multiple
models in one bolt. Figure 6(b) shows the latency at the generation speed of 6000 per
minute, and we cannot measure the rest other configurations than SIS when the number
of bolts is six. As the parallelism increases, the overall latency gradually decreases, and
finally, the trend becomes similar to that of Figure 6(a). As a result, the more inference
bolts we use, the shorter latency all four configurations have, but SIS with the best model
structure shows the shortest latency in all cases.

Figure 6. Latency comparison by the parallelism increase



ICIC EXPRESS LETTERS, VOL.16, NO.11, 2022 1191

5. Conclusions. The stacking-based malicious URL detection model is much more com-
plex than a single inference model, so it takes long time to infer data. Thus, if we simply
apply this stacking technique to a data stream environment, it would incur a critical
problem of long latency. To operate the stacking-based inference model of malicious URL
detection efficiently in a data stream environment, in this paper we proposed to use dis-
tributed configurations using Apache Storm. We presented four stacking configurations:
IS, SS, SSS, and SIS, and evaluated their latency and resource usage through various
experiments. Experimental results showed that SIS, which executed Storm bolts both
independently and sequentially, was much superior to other configurations by providing
the shortest latency. As the future research work, we first investigate to use bagging and
boosting models in addition to stacking models, and we also try to exploit Apache Spark
as a distributed processing system in addition to Apache Storm.

Acknowledgment. This work was partly supported by Institute of Information & com-
munications Technology Planning & evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. 2020-0-00077, Core Technology Development for Intelligently Search-
ing and Utilizing Big Data based on DataMap) and the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1085311).

REFERENCES

[1] T. G. Dietterich, Ensemble methods in machine learning, Proc. of Int’l Workshop on Multiple Clas-
sifier Systems, Berlin, Germany, pp.1-15, 2000.

[2] J. Namgung, S. Son and Y.-S. Moon, Efficient deep learning models for DGA domain detection,
Security and Communication Networks, vol.2021, Article ID: 8887881, 2021.

[3] S. Omer and R. Lior, Ensemble learning: A survey, WIREs Data Mining and Knowledge Discovery,
vol.8, no.4, p.1249, 2018.

[4] R. Evans, Apache Storm, a hands on tutorial, Proc. of 2015 IEEE Int’l Conf. on Cloud Engineering,
Tempe, Arizona, p.2, 2015.

[5] S. Chintapalli et al., Benchmarking streaming computation engines: Storm, Flink and Spark stream-
ing, Proc. of the IEEE Int’l Conf. on Parallel and Distributed Processing Symposium Workshops,
Chicago, IL, pp.1789-1792, 2016.

[6] S. Yang, S. Son, M.-J. Choi and Y.-S. Moon, Performance improvement of Apache Storm using
InfiniBand RDMA, Journal of Supercomputing, vol.75, no.10, pp.6804-6830, 2019.

[7] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou and C. Wang, Machine learning
and deep learning methods for cybersecurity, IEEE Access, vol.6, pp.35365-35381, 2018.

[8] S. Akarsh, S. Sriram, P. Poornachandran, V. K. Menon and K. P. Soman, Deep learning framework
for domain generation algorithms prediction using long short-term memory, Proc. of the 5th Int’l
Conf. on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, pp.666-
671, 2019.

[9] J. Namgung, S. Son and Y.-S. Moon, GRU-based deep learning algorithm for DGA classification,
Proc. of Korea Computer Congress 2020, pp.937-939, 2020 (in Korean).


