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ABSTRACT. The systems actuated by Pneumatic Artificial Muscles (PAMs) are charac-
terized by high nonlinearity and time-varying of their coefficients. Therefore, nonlinear
and robust controllers are required to cope with these challenging control problems. This
work presents the development of control design for trajectory tracking of PAM-actuated
mass based on Sliding Mode Control (SMC). The stability of controlled system has been
analyzed and the control law is developed based on Lypunov theorem. The Particle Swarm
Optimization (PSO) technique is used to tune the design parameters of the proposed con-
troller for further performance enhancement of controlled PAM system. A comparison
study has been conducted in terms of dynamic performances between optimal and non-
optimal sliding mode controllers via computer simulation using MATLAB/Simulink.
Keywords: Pneumatic artificial muscles, Hanging mass, Sliding mode control, Particle
swarm optimization, Stability analysis

1. Introduction. The pneumatic actuators such as cylinders, pneumatic stepper motors,
bellows, and pneumatic engines are commonly used to date. The Pneumatic Artificial
Muscles (PAMs) is one type of pneumatic actuators, which are made mainly of inflatable
and flexible membrane that works like inverse bellows; i.e., they contract on inflation.
The force generated by PAM actuators does not depend only on pressure, but also on the
state of inflation, which adds another source of spring-like behavior. These PAMs, which
mimic the animal muscle, are characterized by lightweight, since the membrane forms the
core element of these actuators. However, they can transfer the same amount of power as
cylinders do, where both actuators have the same volume and pressure ranges [1,2].

The PAMs are used in many applications due to light weight, soft, simple construction
and high force/weight ratio, direct connection, easy replacement and safe operation. The
PAM actuators found their applications in biomechanics, bio-robotics, robotics, artificial
limb replacement. Also, since PAMs are noise-free devices, they are applicable in hospital
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treatments to patients who are sensitive to noise of sounds. Compared to motor, the PAMs
do not need to gear mechanism in order to increase power due to their high power/volume
ratios. Due to their elasticity, the PAMs are useful for the natural frequency of biped
locomotion. Additionally, PAMs are useful for under-water applications due to their water
immunity [1,2]. Since the operation of PAM mimicking that of real muscle, PAM is
effectively used to implement the humanoid.

Many disadvantages have been reported with PM-actuated systems. Due to antagonis-
tic structure of PMs, one needs a pair of PAMs in order to actuate a load in one Degree
of Freedom (DOF), while only one actuator is needed to move the load for the same DOF
in case of motor-actuated systems [1,2].

The PAM-based systems are characterized by high complexity and nonlinearity and
involve uncertain parameters. Many researchers have presented different control strategies
to address the control problems of uncertain mechanical systems actuated by pneumatic
muscles. The following researches address the recent control strategies to PAM-actuated
systems.

In [3], a new model of operation of PM systems has been developed, which improves
the assessment of forces and displacement that can be achieved by the actuator. In
[4], a dexterous manipulator powered by 18 Pneumatic Muscle Actuators (PMA) has
been designed. The PID controller with suitable feed forward term is used to control the
pneumatic system. In [5], the work applied two types of sliding mode control schemes
for angular position control tracking of single link robotic arm actuated by pair of PAMs.
These control schemes are based on first and second order sliding mode control method-
ology. In [6], a new control method is proposed to overcome the space problem due to
the implementation of actual PAM robot controlled by proportional pressure regulator.
The proposed controller is synthesized based on a set of small encoders and pressure
switches to be replaced by the commercial proportional pressure regulator, whose size is
not suitable to be applied on stand-alone robot. In [7], Lilly and Yang applied the sliding
mode techniques for angle tracking of planar PAM-actuated manipulator, which are ar-
ranged in an agonist/antagonist set-up, under load exertion. The sliding mode controller
is developed for planar elbow manipulator such as to guarantee accuracy in the presence
of modeling errors. In [8], an adaptive output tracking controller has been designed for
one-link PAM-actuated robot arm. The proposed controller has developed under unknown
physical system parameters represented by length of the arm, muscle coefficients, moment
of inertia, and mass. In [9], Scaff et al. proposed an optimal conventional PID controller
for position control of one Degree of Freedom (DOF) system actuated by McKibben PAM.
The terms of PID controller are tuned using Simulated Optimization Algorithm (SOA)
to obtain better dynamic performance of PID-controlled system. In [10], Lilly present-
ed an adaptive tracking techniques to enforce the joint angle of PAM-actuated limbs to
track a specified reference trajectory. Two configurations have been studied: one based
on tricep PM and the other on bicep PM. In [11], Boudoua et al. proposed a novel
neural network-based twisting sliding mode controller for control of PAM-actuated robot
arm and for chattering reduction in control signal. In [12], Caldwell et al. developed a
new high power/weight and power/volume braided Pneumatic Muscle Actuator (PMA).
Control of these muscles is explored via adaptive pole-placement controllers.

The Variable Structure Control (VSC) with Sliding Mode Control (SMC) was developed
by Emelyanov and his team assistances in the early 1950’s [13]. The SMC methodology
is an effective tool which aims to design a controller for a nonlinear, complex, high order
and time varying systems in the presence of certain or uncertain parameters variations
and external disturbances [13,14]. The main advantage of the SMC is that it is low sen-
sitive for system parameters variations and disturbances which restricted the necessity
of exact modeling [14]. The SMC replaces the dynamics of a system by application of a
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discontinuous control signal that forces the system to slide along a stable manifold known
as sliding surface [15,16].

The SMC introduces control law which can be distributed into two main parts (equiv-
alent part and switching part). The equivalent part deals with dynamic of the system
and sliding surface such as to conduct the trajectory of the states toward the sliding sur-
face. The switching part of control signal is responsible for driving states trajectory to
equilibrium point by maintaining the dynamics of the system onto the sliding surface. In
the control action of the SMC, there is an undesired phenomenon known as chattering,
which is caused by the high frequency oscillation of the sliding variable around the sliding
surface, and it is one problem in using sliding mode technique [17-23].

The works, which have been interviewed in above literature, have not addressed the ef-
fect of optimization of design parameters on performance of controlled pneumatic system.
It has been shown that the setting of design parameters associated with the proposed con-
troller (SMC) has to meet the stabilization requirement of designed controller and they
have a direct impact on its performance. The setting based on try-and-error procedure
does not lead to optimal performance of controller and hence Particle Swarm Optimiza-
tion (PSO) algorithm has been suggested for tuning purposes. This modern optimization
technique was firstly proposed by Kennedy in 1995 and it was inspired by the behavior
of organisms [19]. This optimization tuner is characterized by fast convergence, efficiency
of computation and it has the capability to find local and global solutions [24-26].

The present work proposed a controller, represented by SMC to control and guarantee
the stability of PAM-actuated hanging system under variation of system parameters. In
addition, the PSO technique is introduced for tuning the designed parameters of the
proposed controllers to better enhance the performances of the proposed controller. The
contributions of the work can be summarized by the following points.

e To develop the SMC algorithm to solve the high non-linearity and time varying
inherited in the PAM-actuated hanging mass.

e To better improve the dynamic performance of PAM-actuated hanging mass con-
trolled by the proposed controller by replacing try-and-error procedure with the
PSO technique for optimal tuning of controllers’ design parameters towards better
performance of controlled PAM system.

2. Model Description. In this configuration of PAM, a mass is hanged by PAM as
indicated in Figure 1. The PAM will consider only the inflation case and the mathemat-
ical model consists of a three-elements in parallel, contractile (force-generating) element,
spring element, and damping element [7,10].

I

Pneumatic Force F exerted Pneumatic
Muscle by PM Muscle
(Deflated) (inflated)

FIGURE 1. Pneumatic artificial muscle [3,6]
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The coeflicients B(P), K(P), and F(P) represent the coefficient of viscous friction, the
spring coefficient and the force exerted by PAM, respectively. All these coefficients depend
on the input pressure supplied to the PM. This pressure can be commanded externally
by varying the voltage supplied to the inlet valve. According to Figure 1, the equation of
motion describing the dynamics of pneumatic artificial is given by [7]

Mi + B(P)i + K(P)x = F(P) — My (1)

where M is the mass (kg), g represents the acceleration of gravity (m/s?), B is the
coefficient of viscosity (viscous friction), K represents the spring coefficient (N/m), and

F is the force exerted by PAM. The functions of coefficients B(P), K(P), and F(P) are
assumed to be linearly dependent on pressure as follows [10]:

F=Fy+FP (2)
B =B, F B,P (3)
K=Ky+ K\P (4)

where Fy, By and K represent the nominal values, Fi, By and K define the linear vari-
ation in these coefficients with respect to pressure. For the inflation case, the coefficient
of viscosity in Equation (3) is given by B = By + B; P, while in the deflation case, the
coefficient of viscosity becomes B = By — By P. Combining Equations (1) and (3) it has

Mi = Fy — Byi — Koz + (Fy ¥ Bii — Ki2) P — Mg (5)

This can be arranged to become

~(5)-()- () (3)s G- (5)) s o

Equation (6) can be represented in state variables by letting x; = z, &1 = x5 and @y = &
and since the input pressure of the PAM is considered as the control signal u, one can
write

x1 = x(t)
jﬁl =z (t) = T2
Gp= i1 =& = f+bu (7)

In inflation case, f and b can be defined in terms of state variables as follows:
f= Fy By K
~\ M)\ )"
. F1 B1 Kl
= (50) = () == (5 ®
On the other hand, in the deflation case, f and b can be given by
£ Fy By Ko
~\ M T2 Vi 1 —9g
. Fl Bl Kl
b= (M) + (M) To — (M) I (9)

In the present work, the inflation case will be taken into account; that is, Equation (8)
will be adopted.

3. Design of SMC Algorithm for PAM-Actuated Hanging Mass. The desired
trajectory in the inflation action of the PAM is assigned to be x14. Let e be the difference
between the actual trajectory x; and the desired trajectory x14 as follows:

€= — Tig (10)
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Taking the first and second time derivatives of error, one can get
é:$1—$1d2x2—$1d (11)
€ =T9 — 14 (12)

For this system, the sliding surface is assumed to be

s=Me+eé (13)
The time derivative of Equation (13) is given by
§=Mé+é =\ |22 — F14] + i — F14 (14)
where \; is a scalar design parameter. Using Equation (7), Equation (14) becomes
§= My — Mg+ f + bu — g (15)
In the SMC technique, the control law (u) is defined by
U = Ueg + Usy (16)

where u., and ug, are the equivalent and switching control parts, which are described
respectively by

Ueq = (%) [—)ql’g + >\1i31d - f + jld] (17)
Usw = _Blsign (S) (18)

where [ is a scalar design gain. If the sliding surface is set to zero s = 0, then § = 0,
and the control law u will be deduced based on Equation (15) as follows

u = (%) [—)\11’2 + /\1i‘1d — f + Zi'ld] - Blsign (S) (19)

If the deflation case is considering, the driving of the control law is the same except that
the value of b in Equation (19) will be replaced by the value of b in Equation (9) as below:

()@

4. Optimization of Control Design Parameters Based on PSO. To get the best
controller performance of SMC, the design parameters of the proposed controller for PAM-
actuated mass have to be tuned. Try-and-error procedure for finding or setting these
parameters is cumbersome and it does not lead to optimal solution in terms of better
dynamic performance of the controlled systems. As such, the PSO technique has been
suggested to find the optimal values of these parameters which could satisfy the perfect
performance of the proposed controller towards best dynamic response. In case of SMC,
the design parameters are (A1, ).

In PSO, each particle navigates around the search (solution) space by updating their
velocity according to its own and also the other particles searching experience. Each
particle must update its velocity and position according to the number of iterations, of
course, this job will be done according to some cost functions for minimum or maximum
case. In our design, the cost function has to be minimized [27-30].

The velocity of each particle is updated according to the following equation:

Vik+1 = w - V;"f + Cy - rand - (pbest - X,k) + Cy - rand - (gbest - sz) (21)

where w represents the inertia coefficient, C'| represents the personal acceleration coeffi-
cient and C represents the social acceleration coefficient. The position of each particle is
updated by the equation

X = XF 4y (22)

where X* and X represent the current and updated vectors, respectively.
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The cost function used to evaluate each particle during the search of minimum is chosen
to be the Root Mean Square Error function (RMSE). In the present work, the setting of
parameters for PSO algorithms is listed in Table 1. Other modern optimization techniques
in the literature can be used instead of PSO to tune the design parameters of SMC. Some
of these are Spider Social Optimization (SSO), spider monkey optimization, Grey-Wolf
Optimization (GWO), and Whale-Optimization Algorithm (WOA) [31-34].

TABLE 1. List of setting parameters for PSO algorithm

Parameters of PSO technique Value
The inertia coefficient w 1.4
The personal acceleration coefficient C 2
The social acceleration coefficient Cs 2
The swarm size (population size) 30
The number of iterations 300

5. Computer Simulation. The numerical values of PAM-actuated hanging mass for
inflation case are listed in Table 2. The proposed controller and the suggested PAM sys-
tems have been modeled using MATLAB/SIMULINK software package. The algorithms
of controller and model of system have been coded inside special m-functions. The main
structure of the controlled system is synthesized and modeled within SIMULINK envi-
ronment using SIMULINK library. The simulated results have been run at time of 5
seconds.

TABLE 2. Numerical values of system parameters

Coefficient description Value
Nominal force exerted by PAM Fj 179.2 N
Variation in force exerted by PAM F} 1.39 N

Nominal coefficient of viscosity By 1.01 (N-s/m)
Variation in coefficient of viscosity B | 0.00691 (N-s/m)

Nominal spring coefficient kq 5.71 N/M
Variation in spring coefficient k; 0.0307 N/M
Mass M 20 Kg
Gravity acceleration g 9.8 m/s?

Figure 2 shows the open-loop test of PAM-actuated mass. The system is commanded
by unit step input pressure for inflation case. It is clear from the figure that the output
response, represented by linear displacement xz;, has oscillatory characteristics and the
response finally settles after 1800 seconds.

It is worthy to mention that the design parameters of SMC are \; and ;. The task
of PSO algorithm is to tune the design parameters of SMC towards better dynamic per-
formance. The fitness function used to evaluate the iterative particles of PSO algorithm
for all control strategies is the Root Mean Square Error (RMSE). The objective of op-
timization technique is to find the optimal values of design parameters such as to give
minimum RMSE. Figure 3 shows the behavior of the cost function for PAM-actuated
mass controlled by SMC.

Table 3 gives the two settings of design parameters for PAM-actuated mass system
controlled by SMC. The first set of design parameters is based on PSO technique, while
the other set of design parameters has been chosen on the try-and-error basis. In the next
scenarios, the optimal values of design parameters acquired from PSO process are set to
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TABLE 3. Numerical values of system parameters

Controller Optimal values Try-and-error values
Coefficient | Value | Coeflicient | Value
A1 4.3167 A\ 1
e A 98.0684 B, 70

their corresponding design parameters of controllers for optimal controlled system. The
desired trajectory is assumed to be a unit step input.

Figure 4 shows the behaviors of linear positions based on optimal and non-optimal SMC.
Also, Figure 5 demonstrates the behaviors of linear velocities of sliding mode controlled
system based on PSO algorithm and try-and-error procedure. It is evident from Figure
4 that the dynamic response obtained by optimal SMC outperforms that based on try-
and-error procedure in terms of transient characteristics.

Figure 6 exhibits the corresponding control effects based on both optimal and non-
optimal SMCs. It is clear that the requirement of higher control effort is the price of
improving the dynamic performance due to PSO algorithm as compared to non-optimal
case.

The tracking errors of PAM system controlled based on optimal and non-optimal SMC
(e) are illustrated in Figure 7. It is clear from Figure 7 that the tracking error with optimal
SMC is less than the case with non-optimal SMC; it is the task of PSO algorithm for such
improvement. Figure 8 shows the trace of trajectory on the phase plane coordinates (e-¢).
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The trajectory has started at initial state on e-axis and reached the sliding surface by
the end of reaching phase and it remained on the surface until the equilibrium point has
arrived. The effect of chattering phenomenon due to the SMC is shown in Figure 9.



ICIC EXPRESS LETTERS, VOL.16, NO.11, 2022 1201

uz 1 L L} L ] 1 L] L] 1

&
[

Tracking Error (cmj)
& &
@ =

——Tracking Error e with optimal SMC

= =Tracking Error e with non-optimal SMC
1 1 1

2 2.5 3 3.5 4 4.5 5
Time (sec)

FI1GURE 7. Tracking error

e-dot

0.5p

Ak

Ficure 8. Sliding surface of SMC

1.2 T T T T T T T T T

E
L 08 -
s
< |
- Al
S 06 -
S
S ABANNNIY -
= 0.4 B -
g = — Displacement x1
— Desired Trajectory
0.2 24 -

2 25 3 35 4 45 5
Time (sec)

FIGURE 9. (color online) Chattering phenomenon

6. Conclusions. This study presented the design of sliding mode controller for position
control of hanging mass, which is actuated by pneumatic muscles. In addition, the PSO
is used to tune the design parameters of SMC to further improve the effectiveness of
controller.

Based on simulated results, one concludes that sliding mode controller could successfully
give good tracking control performance. However, high level of chattering has appeared
in both control signals and system output. The PSO technique has better improved the
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dynamic performance of controlled PAM-actuated system based on SMC as compared to
non-optimal controlled system.

This study can be extended for future work by comparing the optimal SMC, which is
used in this application, to other control schemes in terms of robustness and transient
characteristics [35-40].
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