
ICIC Express Letters ICIC International c©2022 ISSN 1881-803X
Volume 16, Number 11, November 2022 pp. 1235–1240

A MOVING OBJECT DETECTION METHOD BASED ON DISCRETE

FOURIER TRANSFORM

Shanqian Sun and Kohei Inoue

Department of Communication Design Science
Kyushu University

4-9-1 Shiobaru, Minamiku, Fukuoka 815-8540, Japan
sun.shanqian@kyudai.jp; k-inoue@design.kyushu-u.ac.jp

Received April 2022; accepted June 2022

Abstract. Moving object detection in video sequences is a challenging task and con-
tributes to missions like pedestrian detection. In this paper, we propose a discrete Fourier
transform (DFT) based moving object detection method and utilize it to extract pedestri-
ans from a publicly available dataset. Considering the real-time requirement in practical
application, we compare DFT with fast Fourier transform (FFT), experimentally. Data
analysis shows that the FFT based method is a low time consumption moving object de-
tection method with good performance.
Keywords: Moving object detection, Frame sequence, Time complexity, DFT, FFT

1. Introduction. In the domain of computer vision, moving object detection in video
sequence is a challenging task and plays a fundamental role in pedestrian detection, pedes-
trian track, person re-identification, etc. The target of moving object detection is to divide
each video frame into foreground (moving object) and background (static object).

Generally, it is assumed that the video is captured by stationary camera and the light
is stable without flashing. Moreover, the video frame rate and resolution should be high
enough [1]. The traditional moving object detection methods can be divided into frame
difference method, optical flow method and background modeling method [2].

Frame difference method calculates pixel-value difference between every two or three
consecutive frames and the pixel would be recognized as foreground if beyond a threshold.
The idea is simple and it is easy to implement. However, this method would have poor
performance if the object moves slowly since it takes previous frame as a reference and
may be a hole in the detected object [3, 4].

Optical flow method calculates optical flow field, clustering and tracking moving object
according to the optical flow distribution characteristic of the image. However, it requires
large quantity of calculations [5].

Background modeling method estimates a model of the background according to local
pattern of texture, photometric feature and a mixture of Gaussian distribution and classi-
fies the pixels into background and foreground according to the similarity to the modeled
background. This method requires few frames without moving object to initialize the
background model, which cannot be guaranteed in real-life scenarios [6].

DFT based moving object detection method in this paper is enlightened by frame
difference method. However, our method deals with the hole problem. Moreover, we use
its advanced method FFT to improve the computation speed. The rest of this paper is
organized as follows. Section 2 and Section 3 introduce the theories of DFT and FFT and
apply them to the task, respectively. Section 4 gives a numerical example and compares
the efficiency according to the time complexity. Section 5 concludes this paper.

DOI: 10.24507/icicel.16.11.1235

1235



1236 S. SUN AND K. INOUE

2. DFT Based Algorithm. In mathematics, the DFT is a method which can transform
time domain signal into frequency domain signal [7], which is defined as

Xk =

N−1
∑

n=0

xne
−i

2π
N

kn (1)

where {xn} := x0, x1, . . . , xN−1 and {Xk} := X0, X1, . . . , XN−1 indicate time and frequen-
cy domain signals separately. n and k are serial numbers, and N is the length of input
frame sequence. And the inverse DFT (IDFT) is defined as

xn =
1

N

N−1
∑

k=0

Xke
i
2π
N

kn (2)

We can get the frame sequence only with foreground by processing in frequency domain.
Here are the specific steps. Firstly, we separate the RGB frame sequence into 3 gray-scale
frame sequences and transform them into frequency domain. Then, we set X0 to 0 + 0i,
in which i is the imaginary unit, to remove the background. Next, we inversely transform
the {Xk} back to {xn} and divide the pixels into foreground and background according
to the experimental threshold. Finally, we reunite the R, G and B channels images with
OR operation, as it shows in Algorithm 1.

Algorithm 1 DFT based algorithm

1: Prepare gray-scale frame sequences
2: Transform every frame sequence {xn} to {Xk} by DFT
3: Set X0 to 0 + 0i
4: Transform {Xk} back to {xn}
5: Segment foreground and background by the experimental threshold
6: Process with OR operation

We use the UCSD (the University of California San Diego) pedestrian dataset [8] to
test our algorithm. This dataset contains videos of pedestrians on UCSD walkways, taken
from a stationary camera, and is 740×480 at 10 fps. Figure 1 shows the results of steps 1
to 4. 1(a) shows a frame of the original frame sequence, 1(b) shows its G channel image,
1(c) to 1(i) show the result with different input’s length N . It should be noted that there
is an N = 256 image between 1(h) and 1(i) but ignored due to small difference.
We can find that when we calculate with 4 images, the outline of pedestrian is fuzzy

but the background is clean, as 1(c) shows. As the images increase, the outline becomes
clear but the background becomes a little dirty. And as the images continually increase,
the outline becomes sharp and the background becomes clean, as 1(i) shows. Moreover,
no visible difference remains when N exceeds 128.
Then, we use experiential threshold to divide pixels in the N = 512 images into fore-

ground and background, and reunite by OR operation at the end. Figure 2 shows the
result. 2(a), 2(b) and 2(c) are the R, G and B channels images without background. 2(d),
2(e) and 2(f) are the after thresholds’ images from the images above. 2(g) is the after OR
operation images from 2(d), 2(e) and 2(f), and 2(h) is the original image.
From the result, we can find that 1) the foreground is not marked completely, like the

backpack of the right man; 2) some pixels are mistaken into foreground, for example,
on the top right of the image, some leaves are distinguished into foreground due to the
shaking, which requires further effort to deal with.



ICIC EXPRESS LETTERS, VOL.16, NO.11, 2022 1237

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Foreground extraction images with different length N : (a) Or-
iginal image; (b) G channel image; (c) N = 4; (d) N = 8; (e) N = 16; (f)
N = 32; (g) N = 64; (h) N = 128; (i) N = 512

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2. Process with threshold and OR operation: (a) R channel image;
(b) G channel image; (c) B channel image; (d) R channel image binarization;
(e) G channel image binarization; (f) B channel image binarization; (g) after
OR operation image; (h) original image



1238 S. SUN AND K. INOUE

3. FFT Based Algorithm. Although the DFT works well, it can still be improved. We
replace WN with e−i

2π
N to simplify the expression, and Equation (3) shows the regulations

of WN , in which m, N

m
and r are integers.

W nk

N
= W

nk

m

N

m

W nk

N
= W

(n+rN)k
N

= W
(k+rN)n
N

(3)

Equation (1) can be rewritten as the first line in Equation (4), then, using 2r to replace
n and applying the first law in Equation (3), we can get the third line equation, in which
er is the even sequence and or is the odd sequence, and it is the sum of even sequence
DFT and odd sequence DFT as the final line shows.

Xk =
N−1
∑

n=0 (n is even)

xnW
nk

N
+

N−1
∑

n=0 (n is odd)

xnW
nk

N

=

N

2
−1

∑

r=0

x2rW
2rk
N

+

N

2
−1

∑

r=0

x2r+1W
(2r+1)k
N

=

N

2
−1

∑

r=0

erW
rk
N

2

+W k

N

N

2
−1

∑

r=0

orW
rk
N

2

= DFT (er) +W k

N
DFT (or)

(4)

However, the equation above only contains half of the result, which means Xk, 0 ≤ k ≤
N

2
− 1. Equation (5) shows the result of XN

2
+k
, 0 ≤ k ≤ N

2
− 1 by applying the second

law in Equation (3).

XN

2
+k

=

N

2
−1

∑

r=0

erW
r(N

2
+k)

N

2

+W
N

2
+k

N

N

2
−1

∑

r=0

orW
r(N

2
+k)

N

2

= DFT (er)−W k

N
DFT (or)

(5)

Equation (6) sums the result [9]. We can reduce repetition to cut down the runtime
through this method. We calculate every N sequences 10000 times. The algorithm is run
on AMD Ryzen 7 4800H CPU 2.90 GHz with 16 cores, and the result shows in Table 1,
where N stands for the length of frame sequence. We can find that the time growth rate
of FFT is much lower than the DFT’s and the FFT is faster than the DFT when N is
huge.

Xk = DFT (er) +W k

N
DFT (or)

XN

2
+k

= DFT (er)−W k

N
DFT (or)

(6)

Table 1. Operation time (s) with different length sequences and algorithms

N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
DFT 0.09 0.11 0.21 0.60 2.09 7.95 36.69 146.31
FFT 0.14 0.35 0.76 1.58 3.23 6.56 13.22 26.77

4. Numerical Example. Here goes an example of specific computational process of
DFT and FFT with 4 points sequence.



ICIC EXPRESS LETTERS, VOL.16, NO.11, 2022 1239

We take a pixel-value sequence as {x0 = 89, x1 = 40, x2 = 91, x3 = 90} from one pixel

of 4 continuous R channel images to DFT. So, in Equation (1), N = 4, and W4 = e−i
2π
4 =

cos
(

π

2

)

− i sin
(

π

2

)

= −i, then Xk (k = 0, 1, 2, 3) can be expressed as








X0

X1

X2

X3









=











W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 4
4 W 6

4

W 0
4 W 3

4 W 6
4 W 9

4



















x0

x1

x2

x3









=









1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i

















89
40
91
90









=









310
−2 + 50i

50
−2− 50i









(7)

From the equation above, we can easily find that it has N ×N times complex multipli-
cations and N×(N−1) times complex additions. One complex multiplication has 4 times
real-number multiplications and 2 times real-number additions, and one complex addition
has 2 times real-number additions. So, it takes 4N2 times real-number multiplications
and 4N2 − 2N times real-number additions. So, the time complexity is O (N2).

(a) (b) (c)

Figure 3. Process of 4 points FFT: (a) First time decomposition; (b)
second time decomposition; (c) butterfly computation unit

Figure 3 shows the process of 4 points FFT. As the length of N = 4 > 2, {x0 =
89, x1 = 40, x2 = 91, x3 = 90} is divided into even sequence er = {x0 = 89, x2 = 91} and
odd sequence or = {x1 = 40, x3 = 90}. The output can be expressed as Equation (8),
having the same form as Equation (6). Then the length of er and or is 2 and cannot be
separated further, so after their DFT, as Equation (9) shows, the process is finished.

[

X0

X1

]

= DFT (er) +

[

W 0
4 0

0 W 1
4

]

DFT (or)

[

X2

X3

]

= DFT (er)−

[

W 0
4 0

0 W 1
4

]

DFT (or)

(8)

[

X0

X1

]

=

[

x0 +W 0
2 x2

x0 −W 0
2 x2

]

+

[

W 0
4 0

0 W 1
4

] [

x1 +W 0
2 x3

x1 −W 0
2 x3

]

=

[

310
−2 + 50i

]

[

X2

X3

]

=

[

x0 +W 0
2 x2

x0 −W 0
2 x2

]

−

[

W 0
4 0

0 W 1
4

] [

x1 +W 0
2 x3

x1 −W 0
2 x3

]

=

[

50
−2 − 50i

]
(9)

From Figure 3, we can find that 3(a) and 3(b) consist of butterfly computation units in
which A = a+Wb and B = a−Wb as 3(c) shows. An N -point FFT can be decomposed
into log2N stages, then each stage has N

2
butterfly units, and each unit has one complex

multiplication and two complex additions. All of them are N

2
log2N complex multiplica-

tions and N log2N complex additions, so the time complexity is O(N log2N). When N

is a huge number, the FFT costs less time than the DFT.



1240 S. SUN AND K. INOUE

5. Conclusions. This paper raises a DFT based moving object detection method. We
utilize DFT rather than two or three frames to extract foreground and deal with the hole
problem. Moreover, we replace the DFT with FFT to speed up the computational process
and use an example of 4 points FFT to explain the reason by time complexity.
And many open questions have been raised that we want to answer in our further

research. The first is about the threshold. We want to find a method to determine the
threshold automatically, instead of the experimental value. And a post-processing method
is needed to remove the noise in the foreground and complete the missing part.

Acknowledgment. This work was supported by JST SPRING, Grant Number JPM
JSP2136 and JSPS KAKENHI Grant Number JP21K11964.

REFERENCES

[1] H. Zhu, X. Yan, H. Tang, Y. Chang, B. Li and X. Yuan, Moving object detection with deep CNNs,
IEEE Access, vol.8, pp.29729-29741, 2020.

[2] S. D. Roy and M. K. Bhowmik, A comprehensive survey on computer vision based approaches for
moving object detection, 2020 IEEE Region 10 Symposium (TENSYMP), pp.1531-1534, 2020.

[3] J. Hu, R. Liu, Z. Chen, D. Wang, Y. Zhang and B. Xie, Octave convolution-based vehicle detection
using frame-difference as network input, The Visual Computer, pp.1-13, 2022.

[4] S. Cai, Q. Zhang, Q. Wang, Y. Lei and J. Yang, Multi-frame dimensionality-reduction difference
method for extracting key frames of video, 2020 IEEE 44th Annual Computers, Software, and Ap-
plications Conference (COMPSAC), pp.1466-1470, 2020.

[5] L. Wang, Y. Guo, L. Liu, Z. Lin, X. Deng and W. An, Deep video super-resolution using HR optical
flow estimation, IEEE Trans. Image Processing, vol.29, pp.4323-4336, 2020.

[6] A. Khalil, S. U. Rahman, F. Alam, I. Ahmad and I. Khalil, Fire detection using multi color space
and background modeling, Fire Technology, vol.57, no.3, pp.1221-1239, 2021.

[7] X.-Q. Zhang and Z.-M. Lu, Discrete Fourier transform peak detection based robust audio watermark-
ing against time scale modulation and pitch shifting, International Journal of Innovative Computing,
Information and Control, vol.16, no.6, pp.1973-1985, 2020.

[8] A. B. Chan and N. Vasconcelos, Modeling, clustering, and segmenting video with mixtures of dynamic
textures, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.30, no.5, pp.909-926, 2008.

[9] Y. Wang, Z. Jiang, Y. Li, J.-N. Hwang, G. Xing and H. Liu, RODNet: A real-time radar object
detection network cross-supervised by camera-radar fused object 3D localization, IEEE Journal of
Selected Topics in Signal Processing, vol.15, no.4, pp.954-967, 2021.


