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Abstract. Autonomous robots have been developed in various applications to simplify
human tasks. One of the platforms used is a wheeled mobile robot (WMR). The problem
encountered in the implementation of autonomous WMR is navigation. In navigation,
path planning is considered necessary in minimizing investment in development time and
finance. One algorithm that is considered reliable and is still used today is the artificial po-
tential field (APF) path planning algorithm. However, this algorithm has a shortcoming
when it meets local minimum conditions. In this study, a potential field-based algorithm
was developed by changing the shape of the potential repulsive field into a cone-shaped re-
pulsive potential field. In addition, the Gompertz function is used as a switching function
for two different conditions. The path planning algorithm is implemented on the WMR
kinematics model. The test results show that the improved artificial potential field (IAPF)
algorithm can produce a collision-free path under minimum local conditions. The local
minimum forms used in the test are symmetrically aligned robot-obstacle-goal (SAROG),
symmetric static object distribution (SSOD), and goal non-reachable due to obstacle
nearby (GNRON). In addition, the nature of the obstacle used is static and dynamic.
All test results show that the IAPF algorithm can work in static and dynamic conditions
with the resulting Erg less than 1% and the average value of Dmin is 2.22 m.
Keywords: Potential field, Local minimum, Wheeled mobile robot, Gompertz function,
SAROG, SSOD, GNRON

1. Introduction. Nowadays, autonomous mobile robots are becoming one of the exciting
topics for researchers. Autonomous mobile robots are widely applied in many applications
[1-3]. Wheeled mobile robot (WMR) is one type of mobile robot with advantages in
mobility and flexibility. Human habits in using cars make this robot platform choose the
kind of robot that moves on the ground. The problems faced in autonomous WMR are
motion planning and control of the robot. Motion planning or path planning is used to
plan the path traversed by the robot from the initial position to the goal position while
avoiding obstacles in between. Motion control is used to adjust the robot’s motion to
move according to the planned path.

In completing the task, the kinematics of the WMR model is used to determine the
expected motion by adjusting the motion of the actuator and estimating the state of
motion of the WMR with the perceived degrees of freedom (DOF) at the same time.
When the robot goes to the goal while avoiding collisions with obstacles, the kinematic
model of WMR needs to be equipped with navigation capabilities [4]. WMR also must
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have navigational skills to complete the task properly. There are four basic components
of navigation, which are perception, localization, mapping, and path planning [5]. Path
planning is one of the main navigation components that a robot must have to avoid
obstacles in the work environment [6-8]. A good path planning algorithm can reduce the
time investment needed in robot development [9, 10].
One of the path planning algorithms that is considered reliable and is still used today

is the artificial potential field (APF) [11]. However, this algorithm has a shortcoming
where the robot can be trapped in minimum local conditions. The local minimum form
faced by the APF algorithm is commonly referred to as goal non-reachable due to obstacle
nearby (GNRON) [12], and symmetrically aligned robot-obstacle-goal (SAROG) [13]. The
modification of the SAROG problem with two obstacles located symmetrically between
the robot and the goal is called symmetric static object distribution (SSOD). These three
local minimum forms are generally still being solved by researchers using APF-based path
planning algorithms.
Based on existing research in recent years, the solutions to SSOD and SAROG problems

can be grouped into 1) using virtual force [14-16], 2) changing the shape of the repulsive
potential field generated by the obstacle [17], and 3) changing resultant force [8, 18]. Many
researchers have also solved the GNRON problem [10, 14-22]. Currently, the solution to
the GNRON problem which is considered robust is to multiply the repulsive potential field
equation by the robot’s distance to the target. This method results in a gradual decrease
in the repulsive potential field around the target. This is considered to be able to solve
the GNRON problem.
This research will solve the problems of SSOD, SAROG, and GNRON separately or in

combination. The research contributions given are

• Changing the shape of the repulsive potential field based on the cone-shaped poten-
tial field and determining the repulsive gain value (η) based on the attractive gain
value (ξ);

• Minimizing the use of switching functions (if-else) to avoid nested if-else using Gom-
pertz function;

• Implementing the cone-based potential field algorithm on the WMR kinematic mod-
el.

This paper is structured as follows: Section 2 describes the basic concept of tradition-
al APF (TAPF) path planning algorithm, Section 2 also introduces the proposed path
planning algorithm approach and describes the experimental design which contains the
design of the kinematic model and test parameters, Section 3 presents simulation and test
results of the proposed methods, and finally, Section 4 summarizes the results.

2. Method.

2.1. Basic concept of traditional artificial potential field (TAPF). The working
principle of the TAPF path planning algorithm can be seen in Figure 1. The robot moves
in an environment close to the goal, which produces an attractive potential force while
moving away from the obstacle, which generates a repulsive potential force. The red
line represents the obstacle’s repulsive force, while the green line is the attractive force
generated by the goal, which functions to draw the robot closer to the goal. The black
line represents the path of the robot makes from the starting position to the goal while
avoiding the obstacle in between.
The coordinates of the robot in an environment are defined as q = (x, y). The TAPF

algorithm generates a path that can be passed by the robot based on the distance param-
eter between robot-goal (Srg), obstacle-goal (Sor), and the distance of the robot is affected
by the repulsive potential field (r). According to the researcher [11], the attractive and
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Figure 1. The working principle of the TAPF algorithm

repulsive potential field equations can be seen in (1) and (2).

Uatt(q) =
1

2
ξS2

rg (1)

Urep.i(q) =


1

2
η

(
1

Sor

− 1

r

)2

if Sor ≤ r

0 if Sor > r

(2)

Based on (1) and (2), the total value of the potential field generated by Khatib’s TAPF
can be seen in (3). Parameter k shows the number of obstacles in the environment.

UTAPF (q) = Uatt(q) +
n∑

i=1

Urep.i(q) (3)

The parameters ξ and η in Equations (1) and (2) are the attractive gain and the
repulsive gain, respectively, whereas Srg = ∥qr − qgoal∥ and Sor = ∥qobs − qr∥ are the
Euclidean distances between robot-goal and obstacle-robot. According to (2), the value
of the repulsive potential field will affect the robot when Sor ≤ r, while in other conditions,
the repulsive potential field’s value is zero.

The goal of path planning on the robot is to go to goal coordinates. The negative
gradient of the attractive and repulsive potential fields shows the direction of the force
generated by the TAPF algorithm towards the goal. The negative gradient (−∇UTAPF (q))
of the TAPF function is needed to reach the goal position. The negative gradient indicates
decreasing energy from the initial position to the goal position. The minimum energy is
in the goal position.

The shortcoming of the TAPF algorithm is that robot can be trapped in local minimum
condition. Local minimum problems can occur in several forms, as shown in Figure 2.
The problem of symmetrically aligned robot-obstacle-goal (SAROG) in Figure 2(a) is
caused by the position of the robot, which is one line with the obstacle and goal. The
next problem is symmetric static object distribution (SSOD). According to Figure 2(b),
this problem occurs when there is more than one obstacle that is symmetrically located
between the robot and the obstacle. In this condition, the resultant repulsive force of
obstacles received by the robot is proportional to the attractive force received by the
robot from the goal. Another form of local minimum is a goal non-reachable due to
obstacle nearby (GNRON). According to Figure 2(c), GNRON occurs when the obstacle
is located very close to the (Sog ≤ r), where Sog = ∥qobs − qgoal∥. In this condition, the
global minimum position will change due to the influence of the repulsive potential force
near the goal.

2.2. Improved artificial potential field (IAPF). In this study, the attractive poten-
tial field used is following Equation (1), while the repulsive potential field is designed to
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(a) SAROG (b) SSOD (c) GNRON

Figure 2. Local minimum condition

be felt in the range of Sor ≤ r. The peak value of the repulsive potential field must be
greater than the surrounding area to avoid collisions with obstacles. Cone-shape repulsive
potential fields can be used to represent this strategy. The use of cone-shaped potential
fields makes it easier for researchers to determine the value of the repulsive gain used.
In this form, the value of η is used to determine the amplitude of the repulsive potential
field. Therefore, the relationship between attractive gain (ξ) and repulsive gain (η) can be
determined easily. The if-else branching function, which represents the condition affected
by the repulsive potential field, is replaced with the Gompertz function. This aims to
minimize nested if-else in the path planning algorithm.
In this research, the SAROG problem is solved by generating a deflection function

between the robot and the obstacle. A more complex problem than SAROG is SSOD.
The SSOD problem is solved by adding an artificial repulsive force based on the distance
of two adjacent obstacles. This force is generated by an artificial obstacle generated by
two adjacent obstacles (∥qobs.1 − qobs.2∥ < 2r). The GNRON problem is solved by adding
distance of robot to goal (Sn

rg) parameter as a multiplier in repulsive potential field equa-
tion. Based on the previously described strategy, the proposed repulsive potential field
equation can be seen in (4).

Urep(q) = e−e0.1η(Sor−r)

(η − Sor)S
n
rg + ψ + Uao(q) (4)

where η = 10ξ, ψ is the solution to the SAROG problem, and Uao(q) is the solution to
the SSOD problem. ψ is the function of turning the robot between the robot and the
obstacle. The ψ equation can be seen in (5).

ψ =

(
1

1 + ey−yo
+

1

1 + ex−xo

)
(5)

Based on Equation (5), the maximum potential field value generated at y < yo and x < xo
is 2. Other conditions indicate that the potential field value near the target is 0.
Uao(q) is an artificial potential repulsive field generated by two adjacent obstacles. This

problem is rarely found because researchers generally provide more distance between
obstacles. However, the robot can experience a deadlock in this condition when it is at
the junction between 2 obstacles. The artificial obstacle coordinates are given according
to Equation (6).

xao =
xo.1 + xo.2

2
; yao =

yo.1 + yo.2
2

(6)

This obstacle can produce the same repulsive potential field as the real obstacle according
to Equation (7).

Uao(q) =

{
e−e0.1η(Saor−r)

(η − Saor)S
n
rg +

(
1

1+ey−yao + 1
1+ex−xao

)
if D ≤ 2r

0 if D > 2r
(7)
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where Saor =
∥∥ qao−q

2r

∥∥ andD = ∥qobs.1 − qobs.2∥. The total potential field equation proposed
to solve the local minimum problem can be seen in (8)

UIAPF (q) = Uatt(q) + Urep(q)

UIAPF (q) =
1

2
ξS2

rg + e−e0.1η(Sor−r)

(η − Sor)S
n
rg + Uao(qao) + ψ

(8)

The potential field equation is a scalar, while the negative gradient of the potential field
is the vector [23]. The negative gradient of the IAPF function is used to minimize the
available energy. Therefore, the robot can move from high potential field (initial position)
to low potential field (goal position). The total force at a given point is a function that
defines the vector force field. The total force represents the force received by the robot
due to the pulling force from the target and the repulsion force generated by the obstacle.
The total force value can also represent the resultant force received by the robot. The
negative gradient of the function (8) can be seen in Equation (9).

Fx(q) = −dUIAPF (q)

dx

Fy(q) = −dUIAPF (q)

dy

(9)

The resultant force represents the coordinates of the robot to reach the target. There-
fore, the robot must perform the movement using the angle (δ) formed by the resultant
force. The value of the robot’s heading angle is determined by equation δ = atan2(Fy(q),
Fx(q)).

Figure 3. Kinematics model of WMR

2.3. Kinematic model of WMR. In this study, the path planning algorithm will be
implemented in the kinematics of mobile robots according to Equation (10)

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(10)

Based on Figure 3, robot position can be represented in polar coordinates involving dis-
tance difference (ρ > 0) according to Equation (22) and change variable in (23).

ρ =
√

∆x2 +∆y2

α = tan−1

(
Fy(q)

Fx(q)

)
− θ

β = −θ − α

(11)
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where ∆x = (xi − xg) and ∆y = (yi − yg). Therefore, when the value of α is located
between −π

2
and π

2
, the kinematics equation based on polar coordinates can be seen in

(12). The negative gradient of the APF algorithm produces values and directions that
can be used to determine the equilibrium point. The parameter of Fx(q) and Fy(q) is a
tangent line of IAPF function.

ρ̇ = −v cosα

α̇ = −ω +
v sin θ

ρ

β̇ = −v sin θ
ρ

(12)

The equations of linear velocity (v) and angular velocity (ω) that are used to make the
robot reach the goal as the origin can be seen in (13) and (14).

v = kρρ cosα; kρ > 0 (13)

ω = kαα; kα > 0 (14)

3. Result and Discussion. In order to evaluate the performance of the path planning
algorithm, the environment around the robot is designed to have minimum local problems
separately or in combination. Table 1 shows the coordinates of the initial, obstacle, and
goal positions.

Table 1. Environmental setup

Coordinate
Environment Initial Obstacle Goal Problem

(xi, yi) (xo, yo) (xg, yg)
EN1 (0, 5) (5, 5) (10, 5) SAROG
EN2 (0, 5) (8.5, 5.5) (10, 5) GNRON
EN3 (0, 5) (5, 6.5); (5, 3.5) (10, 5) SSOD
EN4 (0, 5) (8.5, 5) (10, 5) SAROG+GNRON
EN5 (0, 5) (5-0.001t, 5) (10, 5) Dynamic SAROG
EN6 (0, 5) (7-0.001t, 6.5); (7-0.001t, 3.5) (10, 5) Dynamic SSOD

Some of the parameters used to evaluate the performance of the path planning algorithm
in testing include the robots mileage (Dtrav) and the error position of the robot against
the goal (Erg) according to (15).

Dtrav =
N∑
k=1

∥qk − qk−1∥ meter

Erg = ∥qend − qg∥ meter

Dmin = ∥qobs − q∥ meter

(15)

where qk, qk−1, and qend are the current position, previous position, and the robot’s final
position, respectively.
Based on the test results in Figures 4(a)-4(f), implementing the TAPF algorithm on

the WMR kinematic model can only deal with the static SAROG problem. The IAPF
algorithm successfully solves all static and dynamic problems. The error to the goal (Erg)
of the IAPF algorithm on all test results is less than 1%. Robots with the IAPF algorithm
can achieve goals and successfully avoid obstacles in between. Summary of the test results
in all of the environments can be seen in Table 2.
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(a) EN1 (b) EN2

(c) EN3 (d) EN4

(e) EN5 (f) EN6

Figure 4. Trajectory of TAPF and IAPF in each environment

Based on Table 2, the TAPF algorithm has an average minimum distance value (Dmin)
of 2 m. In EN2-EN6, the TAPF algorithm fails to reach the target and stops at Sor = 2
m. In the IAPF algorithm, the lowest Dmin is found in EN2 and EN4 because they face
the GNRON problem. In the SSOD (EN3) problem, the resulting Dmin value is 2.91 m.
The IAPF algorithm produces a Dmin of 2.19 m in the SAROG problem. The average
Dmin value generated by the IAPF algorithm is 2.22 m.
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Table 2. Summary of test results

Algorithm Criteria
Environment

EN1 EN2 EN3 EN4 EN5 EN6

TAPF

GR Y N N N N N
Dtrav (m) 13.7 10.7 3.7 14.2 2.0 1.6
Erg (m) 0.09 0.42 6.30 0.30 8.00 5.37
Dmin (m) 2.00 2.00 2.00 2.00 2.00 2.00

IAPF

GR Y Y Y Y Y Y
Dtrav (m) 11.69 12.23 14.62 13.50 11.61 15.21
Erg (m) 0.09 0.08 0.06 0.09 0.04 0.06
Dmin (m) 2.19 1.60 2.91 1.53 2.19 2.91

GR = goal reachability

4. Conclusions. This paper introduces the IAPF algorithm, which is developing an
APF-based path planning algorithm that is implemented on the kinematic model of
wheeled mobile robot (WMR). The simulation results show that the IAPF algorithm
that uses cone-shape based and additional function (ψ) in the repulsive potential field
equation has succeeded in influencing the angle changes produced by the robot before it
reaches the local minimum. The developed algorithm can generate collision-free paths in
a static environment and a dynamic environment. Based on the test results, the robot can
go to the goal with an error to the goal (Erg) less than 1% and the average value of Dmin is
2.22 m. This research contains limitations and can still be developed for further study by
implementing a path planning algorithm in real robot implementation. Implementation
in real conditions can verify the success of the IAPF path planning algorithm.
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