
ICIC Express Letters ICIC International c©2022 ISSN 1881-803X
Volume 16, Number 12, December 2022 pp. 1315–1322

GENERATING PIXEL ART WITH DECORATIVE PIXEL PATTERNS

Jianwei Nie1, Wenyi Cui1, Kohei Inoue1,∗ and Toru Hiraoka2

1Faculty of Design
Kyushu University

4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
{nie.jianwei.301; cui.wenyi.333 }@s.kyushu-u.ac.jp

∗Corresponding author: k-inoue@design.kyushu-u.ac.jp

2Faculty of Information Systems
University of Nagasaki

1-1-1 Manabino, Nagayo-cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan
hiraoka@sun.ac.jp

Received May 2022; accepted July 2022

Abstract. Image pixelization makes pixels visible by enlarging each pixel and reducing
the number of pixels in an image. It is a challenging task to represent an image con-
tent with a limited number of pixels, and fine pixelization products such as pixel art and
icons on computer screens often attract people. In this paper, we propose an expression
technique for image pixelization, where each pixel in a pixelized image can be decorated
with various styles specified by users. For example, we develop three methods for gener-
ating checkered, woven and concentric squares patterns. Experimental results show that
a variety of styles of pixelized images are obtained by the proposed methods.
Keywords: Image pixelization, Pixel art, Image stylization, Pixel decoration, Non-
photorealistic rendering

1. Introduction. Image pixelization is a fundamental technique in digital image pro-
cessing used for image obfuscation as well as image blurring to protect privacy, image
downscaling to have a low-resolution representation in a content-aware manner, and image
abstraction to create fine pixel art which is nowadays recognized as a kind of contemporary
art form.

Goldberg and Flegal first published the term ‘pixel art’ in 1982 [1]. Yu presented a fast-
paced tutorial for making pixel art through the creation of a sprite [2]. Fan proposed a
private image pixelization which extends differential privacy [3] to image data publication
[4]. Kopf et al. proposed a content-adaptive image downscaling method with an adaptive
downsampling kernel that combines a spatial and a range kernels following bilateral filter
[5] and mean shift [6], and showed that their careful sampling can preserve certain high
frequencies features in downscaled image without artifacts [7]. Öztireli and Gross [8] for-
mulated image downscaling as an optimization problem, and derived the closed-form
solution, where the error between the input and output images is measured by SSIM
(structural similarity) index [9]. Gerstner et al. proposed an automated process that
transforms high resolution images into low resolution, small palette outputs in a pixel
art style [10], where a superpixel algorithm SLIC (simple linear iterative clustering) [11]
and MCDA (mass-constrained deterministic annealing) [12] are utilized. These research-
es of forty years’ duration demonstrate the usefulness of image pixelization and a wide
range of interests in pixel art, and, this day, we are free from the technological limitations
of the past. Therefore, it would be a meaningful challenge to develop new pixel-artistic
expressions.

DOI: 10.24507/icicel.16.12.1315

1315



1316 J. NIE, W. CUI, K. INOUE AND T. HIRAOKA

Inglis and Kaplan [13] presented a pixelation algorithm named Superpixelator that con-
verts vector line art into pixel line art based on Bresenham’s algorithm [14]. Kopf and
Lischinski proposed an algorithm for extracting a resolution-independent vector represen-
tation from pixel art images [15]. Han et al. proposed an unsupervised learning method
for pixelization, where preparing the paired training data for supervised learning is im-
practical due to the difficulty in creating pixel art [16]. These researches also suggest the
importance of developing the technologies related to pixel art.
As mentioned above, image pixelization and its related fields attract much attention

from researchers. In this paper, we propose a non-photorealistic rendering scheme for
image pixelization, where each pixel conveys more information than a single color as in
normal color images. That is, each pixel becomes visible by being represented with more
than one pixel or a square block of pixels, in which each pixel can have different colors to
each other. As a result, we can extend the range of expression in pixelized images, i.e., we
can decorate each pixel in image pixelization in various ways. Specifically, we present three
types of pixel decoration: checkered, woven and concentric squares patterns. Experimental
results demonstrate that the proposed methods can provide novel expressions for pixelized
images.
The rest of this paper is organized as follows. Section 2 describes the proposed methods

for making checkered, woven and concentric squares patterns. Section 3 shows experimen-
tal results with real images. Finally, Section 4 concludes this paper.

2. Proposed Methods. In this section, we propose three decorative patterns for image
pixelization: checkered, woven and concentric squares patterns.
Let F = [fij] be an RGB color image with m × n pixels, where fij denotes the RGB

color vector of a pixel in F with coordinates (i, j) for i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Then we divide the color image F into regular and square blocks of equal size, h × h
pixels, and get M ×N blocks where M = ⌊m/h⌋ and N = ⌊n/h⌋ with the floor function
⌊x⌋ which returns the greatest integer less than or equal to x. We omit the residual rows
and columns for simplifying the following procedures. Each block will be converted into
different patterns in three ways as described in the following subsections.

2.1. Checkered pattern. Let fk = [rk, gk, bk] for k = 1, 2, . . . , h2 be the kth RGB color
vector in a block above, and xk ∈ {rk, gk, bk} be an element of fk, where we assume that

xk ∈ {0, 1, . . . , 255}. Then we first compute a mean color as f̄ =
∑h2

k=1
fk/h

2. Next, we
expand the distribution of h2 colors in the block in the RGB color space by

f ′
k = α

(

fk − f̄
)

+ f̄ , (1)

where α is a variable to be maximized under the condition that f ′
k ∈ [0, 255]3. For an

element xk in fk, (1) means that

x′
k = α (xk − x̄) + x̄. (2)

If f ′
k is on the boundary of the RGB color cube, then there is at least one element of f ′

k

satisfying x′
k = 0 or x′

k = 255. Taking this into consideration, we can solve (2) for α as
follows:

αx,k =



























−x̄

xk − x̄
if xk − x̄ < 0

255− x̄

xk − x̄
if xk − x̄ > 0

0 if xk − x̄ = 0.

(3)

To keep all colors within the color cube, we select the minimal αx,k as

α = min
x∈{r,g,b}, k∈{0,1,...,h2}

{αx,k} . (4)



ICIC EXPRESS LETTERS, VOL.16, NO.12, 2022 1317

Figure 1 illustrates a checkered pattern composed of 3 × 4 blocks, where each block
is indexed by (I, J) for I = 0, 1, . . . ,M − 1 and J = 0, 1, . . . , N − 1 where M = 3 and
N = 4. In this figure, each block is painted white if I + J is an even number, or black
otherwise. We decorate this two kinds of blocks in different ways as follows: For each
block at (I, J), substituting α in (4) into (1), we have f ′

k = [r′k, g
′
k, b

′
k], from which we

compute x̄′
k = (r′k + g′k + b′k)/3. If I + J is an even number, then we sort

{

f ′
1
, f ′

2
, . . . , f ′

h2

}

in the ascending order of
{

x̄′
1
, x̄′

2
, . . . , x̄′

h2

}

, or in the descending order otherwise. Then
we rearrange the colors in the block in a spiral. For example, we show a color block in
Figure 2(a). If we rearrange the pixels in descending order from outside to inside, then
we have the result in Figure 2(b). On the other hand, if we rearrange them in ascending
order from outside to inside, then we have the result in Figure 2(c).

Figure 1. A 3× 4 checkered pattern with the numbers I + J

(a) Color block (b) Descending order (c) Ascending order

Figure 2. Pixel rearrangement: (a) A color block of 20 × 20 pixels, (b)
the rearrangement in descending order from the outside to the inside, and
(c) the rearrangement in ascending order

We replace all M ×N blocks in an input image F with the generated patterns by the
above procedure to have an image pixelization with a checkered pattern.

2.2. Woven pattern. Next, we consider the way to express weave patterns with the
technique of decorative pixel patterns. We express the direction of a fiber by the gradient
of the intensity xk, i.e., the sorted colors

{

f ′
1
, f ′

2
, . . . , f ′

h2

}

based on
{

x̄′
1
, x̄′

2
, . . . , x̄′

h2

}

are
rearranged so that the direction of gradation coincides with that of fiber.

Figure 3 shows three weave patterns: (a) plain, (b) Dutch and (c) twill patterns. Each
4 × 4 pattern is laid over the image plane without gaps. Actually, in Figure 3(b), it is
enough to keep only a 2× 2 pattern for constructing the Dutch pattern.

Figure 4 shows an example of generated weave patterns, where the input image is shown
in Figure 7(a), the size of which is 256× 256 pixels, and that of a block is 64× 64 pixels.

We replace all M × N blocks in an image F with a specified weave pattern to have a
decorative image pixelization composed of the weave pattern.



1318 J. NIE, W. CUI, K. INOUE AND T. HIRAOKA

(a) Plain (b) Dutch (c) Twill

Figure 3. Weave patterns are expressed by the gradient of intensity xk.

(a) Plain (b) Dutch (c) Twill

Figure 4. Example of weave patterns generated from the image in Figure 7(a)

Figure 5. (color online) A block composed of six concentric squares, the
areas of which are 1, 8, 16, 24, 32 and 40 pixels from the center to outside

2.3. Concentric squares. Thirdly, we propose a square pattern with concentric squares,
where the colors of six concentric squares are determined so that the mean color in a
square block is preserved after the pixel decoration procedure. Figure 5 shows the six
concentric squares with different colors, where the numbers of pixels with the same color
are 1, 8, 16, 24, 32 and 40 from the center to outside. Therefore, we have three ratios of
the areas of adjacent squares as 1 : 8, 16 : 24 and 32 : 40, that determine the colors of
squares as follows: Let f̄ =

[

r̄, ḡ, b̄
]

be the mean color of a block with 11 × 11 pixels as

illustrated in Figure 5. Then we compute three ratios as γR = min
{

r̄
255−r̄

, 255−r̄
r̄

}

, γG =

min
{

ḡ

255−ḡ
, 255−ḡ

ḡ

}

and γB = min
{

b̄

255−b̄
, 255−b̄

b̄

}

, and assume that γX ≤ γY ≤ γZ for

{X, Y, Z} = {R,G,B}, which corresponds to 1

8
≤ 16

24
≤ 32

40
. Let x̄ be the mean value of an

X channel in the block, which satisfies the inequality x̄ < 255− x̄ or x̄ < 255

2
. In this case,

if x̄−0

255−x̄
> 1

8
, then we solve x̄−x

255−x̄
= 1

8
for x to have x = x̄ − 1

8
(255 − x̄), which satisfies

x̄−x : 255− x̄ = 1 : 8. To keep this ratio on the image plane, we assign a modified version
of the mean color f̄ , the X channel of which is replaced to 255, to the central pixel in the



ICIC EXPRESS LETTERS, VOL.16, NO.12, 2022 1319

block (the yellow pixel in Figure 5), and the obtained value x is substituted into the X
channel of the mean color f̄ , and the modified mean color is assigned to the eight blue
pixels in the block in Figure 5. On the other hand, if x̄−0

255−x̄
≤ 1

8
, then we solve x̄−0

x−x̄
= 1

8

for x to have x =
(

1 + 8

1

)

x̄, which satisfies x̄− 0 : x− x̄ = 1 : 8. To keep this ratio on the

image plane, we assign a modified version of the mean color f̄ , the X channel of which is
replaced to x, to the central yellow pixel in Figure 5, and another modified version of the
mean color f̄ where the X channel is replaced to 0 is assigned to the eight blue pixels in
the block in Figure 5.

Next, we consider another situation that the mean value x̄ satisfies x̄ ≥ 255 − x̄ or
x̄ ≥ 255

2
. In this case, if 255−x̄

x̄−0
> 1

8
, then we solve x−x̄

x̄−0
= 1

8
for x to have x =

(

1 + 1

8

)

x̄,
which satisfies x − x̄ : x̄ − 0 = 1 : 8. To keep this ratio on the image plane, we assign
a modified version of the mean color f̄ , the X channel of which is replaced to 0, to
the central yellow pixel in Figure 5, and the obtained value x is substituted into the X
channel of f̄ , and the modified mean color is assigned to the eight blue pixels in the block
in Figure 5. On the other hand, if 255−x̄

x̄−0
< 1

8
, then we solve 255−x̄

x̄−x
= 1

8
for x to have

x = x̄− 8

1
(255− x̄), which satisfies 255− x̄ : x̄− 0 = 1 : 8.

For the remaining channels Y and Z, we can also determine the colors of squares
denoted by magenta and green for Y channel, cyan and red for Z channel in Figure 5.
Equations for channel value modification are summarized in Table 1.

Table 1. Equations for channel value modification for P
Q
= 1

8
, 16

24
and 32

40
.

In the first step, each channel value x̄ of a mean color f̄ is judged whether
it is smaller than 255

2
or not, and then, in the second step, each situation is

further divided into two cases.

First x̄ <
255

2
x̄ ≥

255

2

Second
x̄− 0

255− x̄
>

P

Q

x̄− 0

255− x̄
≤

P

Q

255− x̄

x̄− 0
>

P

Q

255− x̄

x̄− 0
≤

P

Q

Result x = x̄−
P

Q
(255− x̄) x =

(

1 +
Q

P

)

x̄ x =

(

1 +
P

Q

)

x̄ x = x̄−
Q

P
(255− x̄)

Figure 6 shows an example of the above concentric square pattern, where a block with
11 × 11 pixels shown in Figure 6(a) is extracted from the image in Figure 7(a), and the
mean color is shown in Figure 7(b). Figure 6(c) shows the obtained pattern of concentric
squares.

(a) Extracted block (b) Mean color (c) Concentric squares

Figure 6. Example of concentric squares generated from a block in Figure 7(a)



1320 J. NIE, W. CUI, K. INOUE AND T. HIRAOKA

3. Experimental Results. In this section, we show the results of the proposed image
pixelization with real images. First, we convert three images in Figure 7 into checkered
patterns as shown in Figure 8. The size of input images in Figures 7(a) and 7(b) is 256×256
pixels, to which we set the parameter for block size as h = 20 and h = 10, respectively.
The larger value of h makes each block more noticeable, and image contents obscurer,
and vice versa. Figure 7(c) shows an example of larger image of 618×900 pixels, which is
converted into the checkered image in Figure 8(c) for h = 20. Changing the order of pixels
based on the intensity values between descending and ascending orders, we can visually
enhance the checker pattern.

(a) 256× 256 (b) 256× 256 (c) 618× 900

Figure 7. Input images

(a) h = 20 (b) h = 10 (c) h = 20

Figure 8. Checkered patterns

Next, Figure 9 shows the results of the second decorative image pixelization with woven
patterns generated from the images in Figure 7. Figure 9(a) shows the result of image
pixelization with plain weave pattern generated from the input image in Figure 7(a) for
h = 10, where we can see a vertically and horizontally-woven pattern in a low resolution
image of Figure 7(a). Figures 9(b) and 9(c) show the results with Dutch and twill styles,
respectively. Although these results obtained with the same parameter h = 20, the den-
sities of the woven patterns are different from each other since they have different image
resolutions. The Dutch and twill styles in Figures 9(b) and 9(c) exhibit the bumpiness
of the image surfaces more than the plain style in Figure 9(a) as well as their real woven
products.
Figure 10 shows the results of the third image pixelization with concentric squares

generated from the images in Figure 7. In this method, the size of a block is fixed to
11 × 11 pixels. Therefore, for smaller images, each concentric square pattern becomes
more visible than larger images. However, it is straightforward to make the concentric
square pattern visible in larger images by enlarging the block size to 22× 22, 33× 33 and
so on.



ICIC EXPRESS LETTERS, VOL.16, NO.12, 2022 1321

(a) Plain (h = 10) (b) Dutch (h = 20) (c) Twill (h = 20)

Figure 9. Woven patterns

(a) M ×N = 23× 23 (b) M ×N = 23× 23 (c) M ×N = 56× 81

Figure 10. Concentric squares

4. Conclusions. In this paper, we proposed a method for generating pixel art with
decorative pixel patterns, which is an extension of the concept of image pixelization by
decorating each pixel of a pixelized image to various styles or primitive square patterns.
Specifically, we demonstrated three styles of decorative pixels with checkered, woven and
concentric squares patterns in this paper. To make the checkered patterns visually dis-
tinctive, we enhanced the colors in each block, which expresses a pixel in generated pixel
art, by expanding the color distribution in an RGB color cube. Similar color enhance-
ment technique is also used in the style of concentric squares. For woven patterns, we
applied three weaving patterns: plain, Dutch and twill weavings. The proposed method
for making weaving patterns is also applicable to other weaving patterns expressed on
any square grids.

Our future work will include the generation of “Tetris”-like pixel art, in which adjoining
pixels constitute tetrominoes colored in a limited number of colors.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Numbers JP19
K12664 and JP21K11964.

REFERENCES

[1] A. Goldberg and R. Flegal, ACM president’s letter: Pixel art, Communications of the ACM, vol.25,
no.12, pp.861-862, doi: 10.1145/358728.358731, 1982.

[2] D. Yu, Pixel Art Tutorial, 2020, https://www.derekyu.com/makegames/pixelart.html, Accessed on
21-April-2022.

[3] C. Dwork, F. McSherry, K. Nissim and A. Smith, Calibrating noise to sensitivity in private data
analysis, in Theory of Cryptography. TCC 2006. Lecture Notes in Computer Science, S. Halevi and
T. Rabin (eds.), Springer, Berlin, Heidelberg, doi: 10.1007/11681878 14, 2006.



1322 J. NIE, W. CUI, K. INOUE AND T. HIRAOKA

[4] L. Fan, Image pixelization with differential privacy, in Data and Applications Security and Privacy
XXXII. DBSec 2018. Lecture Notes in Computer Science, F. Kerschbaum and S. Paraboschi (eds.),
Springer, Cham, doi: 10.1007/978-3-319-95729-6 10, 2018.

[5] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, The 6th International
Conference on Computer Vision, Bombay, India, pp.839-846, doi: 10.1109/ICCV.1998.710815, 1998.

[6] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.24, no.5, pp.603-619, doi: 10.1109/
34.1000236, 2002.

[7] J. Kopf, A. Shamir and P. Peers, Content-adaptive image downscaling, ACM Transactions on Graph-
ics, vol.32, no.6, doi: 10.1145/2508363.2508370, 2013.

[8] A. C. Öztireli and M. Gross, Perceptually based downscaling of images, ACM Transactions on
Graphics, vol.34, no.4, pp.1-10, doi: 10.1145/2766891, 2015.

[9] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error
visibility to structural similarity, IEEE Transactions on Image Processing, vol.13, no.4, pp.600-612,
doi: 10.1109/TIP.2003.819861, 2004.

[10] T. Gerstner, D. DeCarlo, M. Alexa, A. Finkelstein, Y. Gingold and A. Nealen, Pixelated image
abstraction, Proc. of the 10th International Symposium on Non-Photorealistic Animation and Ren-
dering (NPAR2012), doi: 10.5555/2330147.2330154, 2012.

[11] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Süsstrunk, Slic superpixels compared to
state-of-the-art superpixel methods, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol.34, no.11, pp.2274-2282, doi: 10.1109/TPAMI.2012.120, 2012.

[12] K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related
optimization problems, Proceedings of the IEEE, vol.86, no.11, pp.2210-2239, doi: 10.1109/5.726788,
1998.

[13] T. C. Inglis and C. S. Kaplan, Pixelating vector line art, in International Symposium on Non-
Photorealistic Animation and Rendering, P. Asente and C. Grimm (eds.), The Eurographics Associ-
ation, doi: 10.2312/PE/NPAR/NPAR12/021-028, 2012.

[14] J. E. Bresenham, Algorithm for computer control of a digital plotter, IBM Systems Journal, vol.4,
no.1, pp.25-30, doi: 10.1147/sj.41.0025, 1965.

[15] J. Kopf and D. Lischinski, Depixelizing pixel art, ACM SIGGRAPH 2011, vol.30, no.4, pp.1-8, doi:
10.1145/2010324.1964994, 2011.

[16] C. Han, Q. Wen, S. He, Q. Zhu, Y. Tan, G. Han et al., Deep unsupervised pixelization, ACM
Transactions on Graphics, vol.37, no.6, pp.1-11, doi: 10.1145/3272127.3275082, 2018.


