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Abstract. In this paper, we introduce the concepts of almost bi-ideals, almost quasi-
ideals, fuzzy almost bi-ideals, and fuzzy almost quasi-ideals in ordered semigroups. More-
over, we show that any nonempty subset A of an ordered semigroup S is an almost bi-ideal
(resp. almost quasi-ideal) of S if and only if the characteristic function of A is a fuzzy
almost bi-ideal (resp. fuzzy almost quasi-ideal) of S. Finally, we prove that any nonzero
fuzzy subset f of an ordered semigroup S is a fuzzy almost bi-ideal (resp. fuzzy almost
quasi-ideal) of S if and only if supp(f) is an almost bi-ideal (resp. almost quasi-ideal) of
S.
Keywords: Ordered semigroups, Almost bi-ideals, Almost quasi-ideals, Fuzzy almost
bi-ideals, Fuzzy almost quasi-ideals

1. Introduction. Ideal theory plays an important role in studying in semigroups. The
notion of almost ideals (or A-ideals) of semigroups was introduced by Grosek and Satko [1]
in 1980. Afterwards, they discovered minimal almost ideals and smallest almost ideals of
semigroups in [2,3], respectively. In 1981, Bogdanović [4] introduced the concept of almost
bi-ideals in semigroups by using the notions of almost ideals and bi-ideals in semigroups.
In 1965, Zadeh [5] introduced the concept of fuzzy subsets. Rosenfeld [6] applied the
concept of Zadeh to defining fuzzy subgroups and fuzzy ideals in groups. In [7], Kuroki
studied various kinds of fuzzy ideals in semigroups and characterized them. In 2002,
Kehayopulu and Tsingelis introduced the notion of fuzzy ideals in ordered semigroups
in [8]. In 2018, Wattanatripop et al. defined fuzzy almost bi-ideals of semigroups in [9].
Recently, Gaketem generalized results in [9] to study interval valued fuzzy almost bi-ideals
of semigroups in [10]. Likewise, Wattanatripop et al. [11] examined almost quasi-ideals
and provided the properties of almost quasi-ideals in semigroups. Ordered semigroups
are one of generalizations of semigroups. In this paper, we focus on generalizing results
of almost bi-ideals and almost quasi-ideals of semigroups to results of these almost ideals
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in ordered semigroups. We define almost bi-ideals, almost quasi-ideals, fuzzy almost bi-
ideals and fuzzy almost quasi-ideals in ordered semigroups. Moreover, we provide some
properties of them and we study the relationship between them. Some results in [4,9,11]
will become special cases of results of this paper.

2. Preliminaries. In this section, we give some definitions and results which will be
used throughout this paper.

Definition 2.1. A semigroup is a set S together with a binary operation ·: S × S −→ S
that satisfies the associative property:

for all x, y, z ∈ S, (xy)z = x(yz).

Definition 2.2. Let S be a set with a binary operation · and a binary relation ≤. Then
(S, ·,≤) is called an ordered semigroup if

(1) (S, ·) is a semigroup,
(2) (S,≤) is a partially ordered set, and
(3) for all x, y, z ∈ S, if x ≤ y, then xz ≤ yz and zx ≤ zy.

Definition 2.3. An element a of an ordered semigroup S is called an idempotent if
a ≤ a2.

Let S be an ordered semigroup. For a nonempty subset A of S, we denote

(A] := {x ∈ S | x ≤ a for some a ∈ A}.
Proposition 2.1. ([12]) Let A and B be nonempty subsets of an ordered semigroup S.

(1) A ⊆ (A].
(2) If A ⊆ B, then (A] ⊆ (B].
(3) (A ∩B] ⊆ (A] ∩ (B] and (A ∪B] = (A] ∪ (B].

For nonempty subsets A and B of an ordered semigroup S, we denote

AB := {ab | a ∈ A and b ∈ B}.
Definition 2.4. A nonempty subset A of an ordered semigroup S is called a subsemigroup
of S if AA ⊆ A.

Definition 2.5. Let S be an ordered semigroup. A subsemigroup B of S is called a bi-ideal
of S if

(1) BSB ⊆ B and
(2) if x ∈ B and s ∈ S such that s ≤ x, then s ∈ B, that is, (B] ⊆ B.

Definition 2.6. Let S be an ordered semigroup. A nonempty subset Q of S is called a
quasi-ideal of S if

(1) (SQ] ∩ (QS] ⊆ Q and
(2) if x ∈ Q and s ∈ S such that s ≤ x, then s ∈ Q, that is, (Q] ⊆ Q.

Following the terminology given by Zadeh [5], let S be an ordered semigroup, we say
that f is a fuzzy subset of S (or a fuzzy set in S) ([8]) if f is a mapping of S into the real
closed interval [0, 1]. For any two fuzzy subsets f and g of a nonempty set S, the fuzzy
subsets f ∨ g and f ∧ g are defined as follows: for all x ∈ S,

(f ∨ g)(x) = max{f(x), g(x)} and (f ∧ g)(x) = min{f(x), g(x)}.
Let f and g be two fuzzy subsets of an ordered semigroup S. In the set of all fuzzy

subsets of S, we define the order relation “≼” as follows:

f ≼ g if and only if f(x) ≤ g(x) for all x ∈ S.

For a fuzzy subset f of a nonempty set S, the support of f is defined by

supp(f) = {x ∈ S | f(x) ̸= 0}.
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The characteristic mapping of a subset A of a nonempty set S is a fuzzy subset of S
defined by

CA(x) =

{
1 if x ∈ A,

0 otherwise.

The definition of fuzzy points was given by Pu and Liu [13]. Let s ∈ S and α ∈ (0, 1].
A fuzzy point sα of a set S is a fuzzy subset of S defined by

sα(x) =

{
α if x = s,

0 otherwise.

For an ordered semigroup S, the fuzzy subsets 1 and 0 of S are defined as follows:

1 : S −→ [0, 1] | x 7−→ 1(x) := 1.
0 : S −→ [0, 1] | x 7−→ 0(x) := 0.

Proposition 2.2. ([12]) Let A and B be nonempty subsets of an ordered semigroup S.
Then the following properties are true.

(1) CA ∧ CB ≼ CA∩B.
(2) CA ∨ CB ≼ CA∪B.
(3) If A ⊆ B, then CA ≼ CB.

Let F (S) be the set of all fuzzy subsets of an ordered semigroup (S, ·,≤). For any
f, g ∈ F (S) and x ∈ S, we define the product of f and g by f ◦ g : S −→ [0, 1] such that

(f ◦ g)(x) :=

 sup
x≤uv

min{f(u), g(v)} if x ≤ uv where u, v ∈ S,

0 otherwise.

Proposition 2.3. Let f , g and h be fuzzy subsets of an ordered semigroup (S, ·,≤). Then
the following properties hold.

(1) If f ≼ g, then f ◦ h ≼ g ◦ h.
(2) If f ≼ g, then f ∧ h ≼ g ∧ h.
(3) If f ≼ g, then f ∨ h ≼ g ∨ h.
(4) If f ≼ g, then supp(f) ≼ supp(g).

Definition 2.7. ([8]) Let S be an ordered semigroup. A fuzzy set f of S is called a fuzzy
subsemigroup of S if f(xy) ≥ min{f(x), f(y)} for all x, y ∈ S.

Definition 2.8. ([7]) Let S be an ordered semigroup. A fuzzy subsemigroup f of S is
called a fuzzy bi-ideal of S if for all x, y, z ∈ S,

(1) if x ≤ y, then f(x) ≥ f(y) and (2) f(xyz) ≥ min{f(x), f(z)}.

Definition 2.9. ([12]) Let S be an ordered semigroup. A fuzzy subset f of S is called a
fuzzy quasi-ideal of S if for all x, y ∈ S,

(1) if x ≤ y, then f(x) ≥ f(y) and (2) (f ◦ 1) ∧ (1 ◦ f) ≼ f .

From the above definition, the fuzzy bi-ideal is defined in terms of the fuzzy subset f
itself while the fuzzy quasi-ideal in terms of the product f ◦ 1 and 1 ◦ f . In [14], the fuzzy
quasi-ideal f can be defined in a similar way using only the fuzzy subset f itself by the
following theorem.

Theorem 2.1. ([14]) Let S be an ordered semigroup. A fuzzy subset f of S is a fuzzy
quasi-ideal of S if and only if the following conditions are satisfied.

(1) If x ≤ y, then f(x) ≥ f(y) for all x, y ∈ S.
(2) If x ≤ ab and x ≤ cd, then f(x) ≥ min{f(a), f(d)} for all x, a, b, c, d ∈ S.



130 S. SUEBSUNG, R. CHINRAM, W. YONTHANTHUM, K. HILA AND A. IAMPAN

Let (S, ·,≤) be an ordered semigroup. For a fuzzy subset f of S, we defined (f ] : S −→
[0, 1] by

(f ](x) = sup
x≤y

f(y) for all x ∈ S.

Proposition 2.4. Let f , g and h be fuzzy subsets of an ordered semigroup S. Then the
following statements hold.

(1) f ≼ (f ].
(2) If f ≼ g, then (f ] ≼ (g].
(3) If f ≼ g, then (f ◦ h] ≼ (g ◦ h] and (h ◦ f ] ≼ (h ◦ g].

Proposition 2.5. Let f be a fuzzy subset of an ordered semigroup S. Then the following
statements are equivalent.

(1) If x ≤ y, then f(x) ≥ f(y).
(2) (f ] = f .

Note. For any s ∈ S and α ∈ (0, 1], we have the following conditions.

(1) (sα ◦f ]∧f ̸= 0 if and only if there exist x, a ∈ S such that x ≤ sa and f(x), f(a) ̸= 0.
(2) (f ◦ sα]∧f ̸= 0 if and only if there exist x, a ∈ S such that x ≤ as and f(x), f(a) ̸= 0.

3. Almost Bi-Ideals and Almost Quasi-Ideals. Throughout this paper, unless stated
otherwise, S stands for an ordered semigroup. In this section, we define the notions of
almost bi-ideals and almost quasi-ideals in ordered semigroups and some properties of
them are provided.

Definition 3.1. A nonempty subset B of S is called an almost bi-ideal of S if (BxB] ∩
B ̸= ∅ for all x ∈ S.

Definition 3.2. A nonempty subset Q of S is called an almost quasi-ideal of S if (xQ]∩
(Qx] ∩Q ̸= ∅ for all x ∈ S.

Example 3.1. Consider the ordered semigroup S = {a, b, c, d, e} under the binary oper-
ation · and the order relation ≤ below.

· a b c d e
a a b a a a
b a b a a a
c a b c a a
d a b a a d
e a b a a e

≤ := {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e)}.
Then every nonempty subset of S is an almost bi-ideal of S except for {e} and every
nonempty subset of S except for {b}, {e}, and {b, e} is an almost quasi-ideal of S.

Theorem 3.1. The following properties hold in an ordered semigroup S.

(1) If B is a bi-ideal of S, then B is an almost bi-ideal of S.
(2) If Q is a quasi-ideal of S and xQ ∩Qx ̸= ∅ for all x ∈ S, then Q is an almost quasi-

ideal of S.

Proof: (1) Let B be a bi-ideal of S and let x ∈ S. Then BxB ̸= ∅ and BxB ⊆ BSB ⊆
B, so (BxB] ⊆ (B] ⊆ B. Thus, we have ∅ ̸= BxB ⊆ (BxB] = (BxB] ∩ B. Hence
(BxB] ∩ B ̸= ∅. Therefore, B is an almost bi-ideal of S. The proof of (2) is similar to
the proof of (1). �
Example 3.2. From Example 3.1, we can see that {a, b, c} is an almost bi-ideal and an
almost quasi-ideal of S but it is not a bi-ideal and a quasi-ideal of S because ({a, b, c}] =
{a, b, c, d} ̸⊆ {a, b, c}.
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From the example above, in general, bi-ideals need not be an almost bi-ideal and quasi-
ideals need not be an almost quasi-ideal.

Theorem 3.2. Let A be a subset of S. If B is an almost bi-ideal (resp. almost quasi-ideal)
of S such that B ⊆ A, then A is also an almost bi-ideal (resp. almost quasi-ideal) of S.

Proof: Assume that B is an almost bi-ideal of S such that B ⊆ A. Let x ∈ S. Then
BxB ⊆ AxA, so (BxB] ⊆ (AxA]. Thus, (BxB] ∩ B ⊆ (AxA] ∩ A. Since B is an almost
bi-ideal of S, we have (BxB] ∩ B ̸= ∅. This implies that (AxA] ∩ A ̸= ∅. Hence A is an
almost bi-ideal of S. The proof of the other is similar. �
Corollary 3.1. The union of arbitrary set of almost bi-ideals (resp. almost quasi-ideals)
of S is also an almost bi-ideal (resp. almost quasi-ideals) of S.

Proof: This corollary follows from Theorem 3.2. �
In case of the intersection of two almost bi-ideals and of the intersection of two almost

quasi-ideals, the result of the above corollary is not true. This can be seen by the following
example.

Example 3.3. From Example 3.1, we have {a, d, e} and {b, c, e} are almost bi-ideals and
almost quasi-ideals of S. However, {a, d, e}∩{b, c, e} = {e} is not both an almost bi-ideal
and an almost quasi-ideal of S.

Lemma 3.1. Let a be an element in S. Then the following statements hold.

(1) S − {a} is not an almost bi-ideal of S if and only if there exists an element x ∈ S
such that ((S − {a})x(S − {a})] = {a}.

(2) S −{a} is not an almost quasi-ideal of S if and only if there exists an element x ∈ S
such that (x(S − {a})] ∩ ((S − {a})x] ⊆ {a}.

Proof: (1) Assume that S−{a} is not an almost bi-ideal of S. Then there exists x ∈ S
such that ((S−{a})x(S−{a})]∩ (S−{a}) = ∅, so we have ((S−{a})x(S−{a})] = {a}.
Conversely, assume that there exists an element x ∈ S such that ((S−{a})x(S−{a})] =
{a}. Then ((S−{a})x(S−{a})]∩ (S−{a}) = ∅. Thus, S−{a} is not an almost bi-ideal
of S. (2) can be proved in a similar manner. �
Theorem 3.3. Let a be an element in S. Then the following statements hold.

(1) If S − {a} is not an almost bi-ideal of S, then either a or a4 is an idempotent.
(2) If S − {a} is not an almost quasi-ideal of S, then either a or a2 is an idempotent.

Proof: (1) Assume that S − {a} is not an almost bi-ideal of S. From Lemma 3.1(1),
there exists x ∈ S such that ((S − {a})x(S − {a})] = {a}.

Case 1: a = a2. Then a = a2 ≤ a2, so a is an idempotent.
Case 2: a ̸= a2. That is, a2 ∈ S − {a}, so a2xa2 = a.

Case 2.1: x ≤ a. Then a = a2xa2 ≤ a2aa2 = a5, so a4 ≤ a8 = (a4)
2
. Thus, a4 is an

idempotent.
Case 2.2: x ̸≤ a. Then x ∈ S − {a}, so x3 = a. Since x ∈ S − {a} and a2 ∈ S − {a},

we have x2a2 = a.
If x2a ≤ a, then a = x2a2 = (x2a) a ≤ aa = a2 ≤ a2.
If x2a ̸≤ a, then x2a ∈ S − {a}, so x2ax3a = a. Thus, we have

a = x2a
(
x3
)
a = x2aaa =

(
x2a2

)
a = aa = a2 ≤ a2.

Hence we can conclude that in Case 2.2, a is an idempotent. Therefore, a or a4 is an
idempotent.

(2) Assume that S − {a} is not an almost quasi-ideal of S. By Lemma 3.1(2), there is
an element x ∈ S such that (x(S − {a})] ∩ ((S − {a})x] ⊆ {a}.
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Case 1: a = a2. Then a = a2 ≤ a2, so a is an idempotent.
Case 2: a ̸= a2. Then a2 ∈ S − {a}, so

(
xa2

]
∩
(
a2x

]
⊆ {a}.

Case 2.1: a ≤ x. Then a3 ≤ xa2 and a3 ≤ a2x, it follows that a3 ∈
(
xa2

]
and

a3 ∈
(
a2x

]
. So a3 ∈

(
xa2

]
∩
(
a2x

]
. Thus, a = a3, so a2 = a4 ≤ (a2)

2
. In this case, a2 is

an idempotent.
Case 2.2: a ̸≤ x. That is, x ∈ S − {a}. Then x2 ∈

(
x2
]
⊆ {a}, so x2 = a. Thus,

a2 = ax2 = x2a.
If a ≤ xa and a ≤ ax, then a2 ≤ xa2 and a2 ≤ a2x. This implies that a2 ∈

(
xa2

]
and

a2 ∈
(
a2x

]
, so a2 ∈

(
xa2

]
∩
(
a2x

]
⊆ {a}. Thus, a = a2 ≤ a2.

If a ≤ xa and a ̸≤ ax, then a2 ≤ xa2 and ax ∈ S − {a}. Since a2 ∈ S − {a} and
ax ∈ S − {a}, it follows that

(
xa2

]
∩
(
ax2

]
⊆ {a}. Since a2 ≤ xa2 and a2 = ax2, we have

a2 ∈
(
xa2

]
∩
(
ax2

]
⊆ {a}, so a = a2 ≤ a2.

If a ̸≤ xa and a ≤ ax, then xa ∈ S − {a} and a2 ≤ a2x. Since xa ∈ S − {a} and
a2 ∈ S − {a}, it follows that

(
x2a

]
∩
(
a2x

]
⊆ {a}. Since a2 = x2a and a2 ≤ a2x, we have

a2 ∈
(
x2a

]
∩
(
a2x

]
⊆ {a}, so a = a2 ≤ a2.

If a ̸≤ xa and a ̸≤ ax, then xa, ax ∈ S − {a}, so
(
x2a

]
∩
(
ax2

]
⊆ {a}. Since a2 = x2a

and a2 = ax2, we have a2 ∈
(
x2a

]
∩
(
ax2

]
⊆ {a}. Thus, a = a2 ≤ a2.

In Case 2.2, we can see that a ≤ a2. Hence a is an idempotent.
Consequently, from all cases, we conclude that a or a2 is an idempotent. �

4. Fuzzy Almost Bi-Ideals and Fuzzy Almost Quasi-Ideals. In this section, we
introduce the concepts of fuzzy almost bi-ideals and fuzzy almost quasi-ideals in ordered
semigroups. Moreover, some properties of fuzzy almost bi(quasi)-ideals are provided and
the relationship between almost bi(quasi)-ideals and fuzzy almost bi(quasi)-ideals of or-
dered semigroups is studied.

Definition 4.1. A nonzero fuzzy subset f of S is called a fuzzy almost bi-ideal of S if
(f ◦ sα ◦ f ] ∧ f ̸= 0 for all s ∈ S and α ∈ (0, 1].

Definition 4.2. A nonzero fuzzy subset f of S is called a fuzzy almost quasi-ideal of S
if (sα ◦ f ] ∧ (f ◦ sα] ∧ f ̸= 0 for all s ∈ S and α ∈ (0, 1].

Note. Let s ∈ S and α ∈ (0, 1]. From the above definitions, we conclude that the
following conditions hold.

(1) (f ◦ sα ◦ f ] ∧ f ̸= 0 if and only if there exist x, a, b ∈ S such that x ≤ asb and
f(x), f(a), f(b) ̸= 0.

(2) (sα ◦ f ]∧ (f ◦ sα]∧ f ̸= 0 if and only if there exist x, a, b ∈ S such that x ≤ sa, x ≤ bs
and f(x), f(a), f(b) ̸= 0.

Example 4.1. Consider the ordered semigroups S = {a, b, c, d, e} under the binary oper-
ation · and the order relation ≤ below.

· a b c d e
a a b a a a
b a b a a a
c a b c a a
d a b a a d
e a b a a e

≤ := {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e)}.
Define functions f : S −→ [0, 1] by f(a) = 0, f(b) = 0.3, f(c) = 0, f(d) = 0.1, f(e) = 0.2,
and g: S −→ [0, 1] by g(a) = 0.1, g(b) = 0.3, g(c) = 0.1, g(d) = 0, g(e) = 0.3.
Then we have f is a fuzzy almost bi-ideal, but it is not a fuzzy almost quasi-ideal of S,

while g is both a fuzzy almost bi-ideal and a quasi-ideal of S.
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Theorem 4.1. Let f be a nonzero fuzzy subset of S. Then the following statements hold.

(1) Every fuzzy bi-ideal of S is a fuzzy almost bi-ideal of S.
(2) If S is a commutative ordered semigroup, then every fuzzy quasi-ideal of S is a fuzzy

almost quasi-ideal of S.

Proof: (1) Assume that f is a fuzzy bi-ideal of S. Let s ∈ S and α ∈ (0, 1]. Since f is
nonzero, then there exists an element a ∈ S such that f(a) ̸= 0. Let x = asa. Then we
have

(f ◦ sα ◦ f ](x) = sup
x≤y

(f ◦ sα ◦ f)(y) ≥ (f ◦ sα ◦ f)(x) = sup
x≤uv

min{(f ◦ sα)(u), f(v)}

≥ min{(f ◦ sα)(as), f(a)} = min

{
sup
as≤uv

min{f(u), sα(v)}, f(a)
}

≥ min {min{f(a), sα(s)}, f(a)} = min{α, f(a)} ̸= 0.

Thus, (f ◦ sα ◦ f ](x) ̸= 0. Since f is a fuzzy bi-ideal of S, it follows that

f(x) = f(asa) ≥ min{f(a), f(a)} = f(a) ̸= 0.

Hence ((f ◦ sα ◦ f ]∧ f)(x) = min{(f ◦ sα ◦ f ](x), f(x)} ≠ 0. This implies that (f ◦ sα ◦ f ]
∧ f ̸= 0. Therefore, f is a fuzzy almost bi-ideal of S.

(2) Assume that f is a fuzzy quasi-ideal of S. Let s ∈ S and α ∈ (0, 1]. Since f is
nonzero, then there is an element a ∈ S such that f(a) ̸= 0. Since S is commutative, it
follows that sa = as. Let x = sa = as. Since x ≤ sa, then we have

(sα ◦ f ](x) = sup
x≤y

(sα ◦ f)(y) ≥ (sα ◦ f)(x) = sup
x≤uv

min{sα(u), f(v)}

≥ min{sα(s), f(a)} = min{α, f(a)} ̸= 0.

Thus, (sα ◦ f ](x) ̸= 0. Similarly, since x ≤ as, then we have (f ◦ sα](x) ̸= 0. Since f is
a fuzzy quasi-ideal of S, then x ≤ as and x ≤ sa, by Theorem 2.1, f(x) ≥ f(a) ̸= 0, so
f(x) ̸= 0. Hence ((sα ◦ f ]∧ (f ◦ sα]∧ f)(x) ̸= 0. Therefore, f is a fuzzy almost quasi-ideal
of S. �
Example 4.2. From Example 4.1, we have g as a fuzzy almost bi-ideal and a fuzzy almost
quasi-ideal of S. However, g is not a fuzzy bi-ideal and a fuzzy quasi-ideal of S because
a ≤ b, but f(a) = 0 ̸≥ 0.3 = f(b).

The above example shows that the converse of Theorem 4.1 is not true.

Theorem 4.2. For every nonzero fuzzy subset f of S and g a fuzzy almost bi-ideal (resp.
fuzzy almost quasi-ideal) of S such that g ≼ f , f is also a fuzzy almost bi-ideal (resp.
fuzzy almost quasi-ideal) of S.

Proof: Let f be a nonzero fuzzy subset of S and let s ∈ S and α ∈ (0, 1]. Assume that
g is a fuzzy almost bi-ideal of S such that g ≼ f . This implies that (g ◦ sα ◦ g] ∧ g ̸= 0
and (g ◦ sα ◦ g] ≼ (f ◦ sα ◦ f ]. Then we have 0 ̸= (g ◦ sα ◦ g] ∧ g ≼ (f ◦ sα ◦ f ] ∧ f , so
(f ◦ sα ◦ f ] ∧ f ̸= 0. Hence f is a fuzzy almost bi-ideal of S. The proof in other can be
done in a similar way. �
Corollary 4.1. The union of any two fuzzy almost bi-ideals (resp. fuzzy almost quasi-
ideals) is also a fuzzy almost bi-ideal (resp. fuzzy almost quasi-ideal) of S.

Proof: The proof follows from Theorem 4.2. �
Theorem 4.3. A nonempty subset A of S is an almost bi-ideal (resp. almost quasi-ideal)
of S if and only if CA is a fuzzy almost bi-ideal (resp. fuzzy almost quasi-ideal) of S.
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Proof: Assume that A is an almost bi-ideal of S. Let s ∈ S and α ∈ (0, 1]. Then
(AsA] ∩ A ̸= ∅. Thus, there exist x ∈ A and x ∈ (AsA], so CA(x) = 1 ̸= 0 and
x ≤ asb for some a, b ∈ A. Since a, b ∈ A, then we have CA(a) = 1 and CA(b) = 1.
This implies that (CA ◦ sα ◦ CA](x) ≥ min{CA(a), sα(s), CA(b)} = min{1, α, 1} ̸= 0.
Hence ((CA ◦ sα ◦ CA] ∧ CA)(x) ̸= 0. Therefore, CA is a fuzzy almost bi-ideal of S.
Conversely, assume that CA is a fuzzy almost bi-ideal of S and let s ∈ S. Choose
α = 1. Then (CA ◦ s1 ◦ CA] ∧ CA ̸= 0, so there are x, a, b ∈ S such that x ≤ asb and
CA(x), CA(a), CA(b) ̸= 0. This implies that x, a, b ∈ A. We have x ≤ asb ∈ AsA, so
x ∈ (AsA]. Thus, x ∈ (AsA] ∩ A. Hence (AsA] ∩ A ̸= ∅. Therefore, A is an almost bi-
ideal of S. The proof in other can be done in a similar way. �
Theorem 4.4. A nonzero fuzzy subset f of S is a fuzzy almost bi-ideal (resp. fuzzy almost
quasi-ideal) of S if and only if supp(f) is an almost bi-ideal (resp. almost quasi-ideal) of
S.

Proof: Assume that f is a fuzzy almost bi-ideal of S. Let s ∈ S. Choose α = 1. Then
(f ◦s1◦f ]∧f ̸= 0, so there are x, a, b ∈ S such that x ≤ asb and f(x), f(a), f(b) ̸= 0. Since
f(x), f(a), f(b) ̸= 0, it follows that x, a, b ∈ supp(f). Thus, x≤ asb∈ (supp(f))s(supp(f)),
so we have x ∈ ((supp(f))s(supp(f))]. This implies that x ∈ ((supp(f))s(supp(f))] ∧
supp(f). Therefore, ((supp(f))s(supp(f))]∧supp(f) ̸= ∅. Conversely, assume that supp(f)
is an almost bi-ideal of S. Let s ∈ S and α ∈ (0, 1]. Then ((supp(f))s(supp(f))] ∧
supp(f) ̸= ∅. That is, there exists x ∈ S such that x ∈ ((supp(f))s(supp(f))] and
x ∈ supp(f), so x ≤ asb and f(x), f(a), f(b) ̸= 0. Thus, (f ◦ sα ◦ f ]∧ f ̸= 0. Hence f is a
fuzzy almost bi-ideal of S. The proof in other can be done in a similar way. �

5. Conclusion. The union of two almost bi-ideals (almost quasi-ideals) is also an almost
bi-ideal (almost quasi-ideal) but the intersection of them need not be an almost bi-ideal
(almost quasi-ideal) in ordered semigroups. In Theorems 4.3 and 4.4, we give some rela-
tionship between almost bi-ideals (almost quasi-ideals) and their fuzzifications. Moreover,
the results in this paper generalized some results in [4, 9, 11].
In the future work, we can study other kinds of almost ideals and their fuzzifications in

ordered semigroups or almost ideals and fuzzifications in other algebraic structures, for
example, ordered Γ-semihypergroups were studied in [15].
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[4] S. Bogdanović, Semigroups in which some bi-ideal is a group, Review of Research Faculty of Science-
University of Novi Sad, vol.11, pp.261-266, 1981.

[5] L. A. Zadeh, Fuzzy sets, Inf. Control, vol.8, pp.338-353, 1965.
[6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., vol.35, pp.512-517, 1971.
[7] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli, vol.28, pp.17-21, 1979.
[8] N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semigroup Forum, vol.65, pp.128-

132, 2002.
[9] K. Wattanatripop, R. Chinram and T. Changphas, Fuzzy almost bi-ideals in semigroups, Int. J.

Math. Comp. Sci., vol.13, no.1, pp.51-58, 2018.
[10] T. Gaketem, Interval valued fuzzy almost bi-ideals in semigroups, JP J. Algebra Number Theory

Appl., vol.41, no.2, pp.245-252, 2019.
[11] K. Wattanatripop, R. Chinram and T. Changphas, Quasi-A-ideals and fuzzy A-ideals in semigroups,

J. Discrete Math. Sci. Crypt., vol.21, no.5, pp.1131-1138, 2018.
[12] N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inform. Sci.,

vol.176, pp.3675-3693, 2006.



ICIC EXPRESS LETTERS, VOL.16, NO.2, 2022 135

[13] P.-M. Pu and Y.-M. Liu, Fuzzy topology, J. Math. Anal. Appl., vol.76, pp.571-599, 1980.
[14] N. Kehayopulu and M. Tsingelis, Fuzzy right, left, quasi-ideals, bi-ideals in ordered semigroups,

Lobachevskii J. Math., vol.30, no.1, pp.17-22, 2009.
[15] H. Sanpan, N. Lekkoksung, S. Lekkoksung and W. Samormob, Characterizations of some regulari-

ties of ordered Γ-semihypergroups in terms of interval-valued Q-fuzzy Γ-hyperideals, International
Journal of Innovative Computing, Information and Control, vol.17, no.4, pp.1391-1400, 2021.


