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Abstract. This paper considers an optimal consensus problem for a class of heteroge-
neous discrete-time nonlinear multi-agent systems (MASs) with unknown dynamics and
uncertain control directions. This problem is transformed to find the solution of the cou-
pled Hamilton-Jacobi-Bellman (HJB) equations. A novel reinforcement learning based
distributed control algorithm implemented by an actor-critic form has been proposed to
obtain the optimal control policies. Fuzzy rules emulated networks (FRENs) have been
involved to estimate the uncertain control directions and the unknown system dynamics.
Simulation results validate the boundedness and effectiveness of the closed-loop systems
applying the proposed control strategy.
Keywords: Heterogeneous multi-agent systems, Optimal consensus, Uncertain control
directions, Fuzzy rules emulated networks

1. Introduction. One of the most important and challenging problems in the consensus
control of multi-agent systems (MASs) is the optimal consensus problem. In this problem,
the coupled Hamilton-Jacobi-Bellman (HJB) equation is usually established to communi-
cate the optimal control law and the minimized performance index. Then, the consensus
problem has been transformed to the solution of the coupled HJB equation.

The reinforcement learning (RL) strategy has been commonly used in optimal control
field, in which the optimal solution of the HJB equation can be found through frequent
interaction with the environment. In [1], the HJB equation of the augmented multiple
inputs system is solved for the continuous affine nonlinear system with multiple inputs. An
optimal safety controller is obtained by combining RL and model predictive control in [2].
The robust formation control problem of the cooperative under-actuated quad rotor with
unknown nonlinear dynamics and disturbances has been considered in [3]. To solve the
constrained optimal control problem, the neural network based RL algorithm implemented
by an actor-critic form has been established in [4]. In these methods, the idea nonlinear
controller with unknown parameters and the strategic utility function are approximated
by the action network and the critic network with adaptable weights, respectively.

Fuzzy-rules emulated network (FREN) designed by [5] is a kind of fuzzy neural networks
whose IF-THEN rules are created by the human knowledge. Compared with artificial
neural networks whose structure and adjustable parameters are set randomly, those of
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FRENs are designed in the sense of engineering, which can make full use of the prior
knowledge to improve the network performance. For nonlinear discrete-time systems, an
adaptive controller based on FRENs and the sliding mode mechanism is proposed by [6].
A model free controller based on RL with IF-THEN rules is proposed in [7] for a class
of nonlinear discrete-time systems with output feedback. In order to solve the power
capture problem of variable speed wind turbine systems with flexible shaft, an adaptive
power signal feedback control based on FRENs and command filter is proposed in [8].
The main contributions of this paper are as follows.
1) A new distributed adaptive control strategy based on RL and FRENs has been

developed. Unlike the previous works in [9-12], in this strategy, the performance index
and the optimal control policy are approximated by the critic FREN and the actor FREN,
respectively.
2) Different from the controller designed for MASs with certain control directions in

[13-17], the distributed control problem of heterogeneous nonlinear non-affine discrete-
time MASs with unknown system dynamics and uncertain control directions has been
addressed.
The rest of this paper is organized as follows. In Section 2, the problem and some

preliminaries have been formulated. Section 3 gives a new distributed optimal control
strategy based on RL and FRENs. Simulation results are provided in Section 4 to verify
the effectiveness of the proposed strategy. Finally, the conclusion goes in Section 5.

2. Problem Statement and Preliminaries. Consider a class of heterogeneous nonlin-
ear MASs with N followers, in which each dynamic of the follower agent i has a non-affine
pure-feedback form as follows:

xi1(k + 1) = fi1 (x̄i1(k), xi2(k)) , . . . , xini
(k + 1) = fini

(x̄in(k), ui(k)) ,

yi(k) = xi1(k)
(1)

where xi = [xi1, xi2, . . . , xini
]T ∈ Rni , i = 1, 2, . . . , N represents the system state vector of

agent i, x̄ij(k) = [xi1(k), xi2(k), . . . , xij(k)]
T , j = 1, 2, . . . , ni, ni ≥ 1 is the order of the ith

agent, xij is the jth system state of the ith agent, and fij(·, ·) is an unknown nonlinear
function. yi(k) and ui(k) ∈ R, i = 1, 2, . . . , N are the output and input of the ith agent,
respectively.

Assumption 2.1. Each fij(·, ·), i = 1, 2, . . . , N , j = 1, 2, . . . , ni in (1) is continuous
with respect to all the arguments and continuously differentiable with respect to the second
argument.

Assumption 2.2. There exists a constant gM = supi≤N,j≤ni
|gij(k)|, i = 1, 2, . . . , N ,

j = 1, 2, . . . , ni so that 0 < |gij(·)| ≤ gM , where gij(·) = ∂fj (x̄ij(k), xi,j+1(k)) /∂xi,j+1(k) ,
j = 1, 2, . . . , ni−1 and gini

(·) = ∂fn (x̄in(k), ui(k)) /∂ui(k) are the unknown control gains.
The sign of function gij represents the control direction which is unknown and unfixed.

Meanwhile, consider a leader node denoted as v0, which is defined as y0(k + n0) =
φ0(k).
The control goal is to design a distributed control law ui for each follower agent such

that the output of the follower synchronizes to a small neighborhood U(y0(k), δ) of that
of the leader, i.e., limk→∞ ∥yi(k)− y0(k)∥ < δ, for ∀i and δ > 0.
Define the local neighborhood tracking error as ei(k) =

∑
j∈Ni

(aij(yi(k) − yj(k))) +

bi(yi(k) − y0(k)), where bi ≥ 0 denotes the pinning gain. The overall tracking error can

be considered as e(k) = (L+B)
(
y(k)− y

0
(k)

)
, where L = [lij] ∈ RN×N is the Laplacian

matrix for the directed graph; B = [bij] ∈ RN×N is a diagonal matrix with the diagonal ele-
ments bij = bi; e(k) = [e1(k), e2(k), . . . , eN(k)]

T ∈ RN ; y(k) = [y1(k), y2(k), . . . , yN(k)]
T ∈

RN ; y
0
(k) = [y0(k), y0(k), . . . , y0(k)]

T ∈ RN .
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In order to simplify the controllers design, system (1) can be transformed into an input-
output form without the future states according to the derivative process given in [18]

yi(k + ni) = φi (zi(k), ui(k)) (2)

where zi(k) = [yi(k), . . . , yi(k− n+ 1), ui(k− 1), . . . , ui(k− n+ 1)], φi(·, ·): R2n → R are
unknown nonlinear functions.

The local performance index function is defined as

Ji(ei(k), ui(k − ni)) =
∞∑
t=k

γt−kri(k) = ri(k) + γJi(ei(k + 1), ui(k + 1− ni)) (3)

where ri(k) is the simplicity of ri (ei(k), ui(k − ni)) = (1/2)e2i (k) + (γu/2)[ui(k − ni)
+ ei(k − ni)]

2; 0 < γ ≤ 1 is the discount factor.
From Bellman optimality principle and (3), the coupled HJB equation can be derived as

J∗
i (ei(k)) = minui(k) (ri(k) + γJ∗

i (ei(k + 1))), where J∗
i (ei(k)) represents the optimal local

performance index function. The corresponding optimal control law can be formulated as
u∗
i (k) = argminui(k) (ri(k) + γJ∗

i (ei(k + 1))).

3. Distributed Optimal Controller Design Based on RL and FRENs.

3.1. Critic FREN and weight update law. A function with ideal parameters is used
to approximate the unknown optimal index function J∗

i (k) for each agent i: J∗
i (k) =

β∗T
ci φci(k), i = 1, 2, . . . , N where β∗

ci ∈ Rmci is the unknown parameter vectors for the
regression vectors φci(k) ∈ Rmci . The regression vectors will be established by a set of
membership functions of FRENs to cover the operating range of output zi(k) with the
number of membership mci for J

∗
i (k).

Let Ĵi(k) = βT
ci(k)φci(k) be an approximation of the unknown cost function J∗

i (k),
which has the FREN structure. βci(k) is the adjustable parameter vector for the regression
vectors φci(k) in FREN J∗

i (k).

Define a prediction error eci(k) = γĴi(k)− Ĵi(k − 1) + ri(k) of the critic FREN.

Similarly, the critic network FREN weight estimation error can be defined as β̃ci(k) =

βci(k)− β∗
ci. Further, the approximation error is defined as ζci(k) = β̃T

ciφci(k).
Thus, by substituting ζci(k) into eci(k), it follows that eci(k) = γζci(k) + γJ∗

i (k)−
ζci(k − 1)− J∗

i (k − 1) + ri(k).
Then, the weight tuning algorithms for the critic FREN will be discussed.
Firstly, we define an objective function Eci(k) = (1/2)e2ci(k), which is a quadratic

function of the tracking errors eci(k) and will be minimized by the critic FREN.

The updating law of the weight vector βci(k) of the critic FREN Ĵi(k) is designed
according to a standard gradient-based adaptation method and is given by βci(k + n) =
βci(k) + ∆βci(k), where ∆βci(k) = γc [−∂Eci(k)/∂βci(k)] with αci ∈ R being the adapt-
ation gain.

Combining eci(k), Eci(k) and ∆βci(k), the updating law of the weights of the critic
FREN can be derived by using the chain rule as

∆βci(k) = −γc
∂Eci(k)

∂eci(k)

∂eci(k)

∂Ĵi(k)

∂Ĵi(k)

∂βci(k)
= −γcγφci(k)

(
γĴi(k) + r(k)− Ĵi(k − 1)

)
(4)

Thus, the weight updating law of the critic FREN can be rewritten as

βci(k + ni) = βci(k)− γcγφci(k)
(
γĴi(k) + r(k)− Ĵi(k − 1)

)
(5)
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3.2. Action FREN and weight update law. From the input-output form (2) of the
MAS, define a direction function for each agent as gi(·) = ∂φi (zi(k), ui(k))/∂ui(k).
From the definition of the tracking error e(k) and the non-singular matrix L+B, there

exists a transformation matrix T which can change the matrix into diagonal or Jordan
standard form. Then, both sides of equation e(k) multiply matrix T−1 and T as

T−1e(k)T = Λ
(
y(k)− y

0
(k)

)
(6)

where Λ = T−1(L + B)T . Then, left multiplying the both sides of (6) by matrix Λ−1,
it follows that eT (k) = Λ−1T−1e(k)T = y(k) − y

0
(k), where eT (k) = [eT1(k), eT2(k), . . . ,

eTN (k)]
T , with eTi

(k + n) = φi (zi(k), ui(k))− y0(k + ni).
It is easy to show that ∂ (φi (zi(k), ui(k))− y0(k + ni))/∂ui(k) ̸= 0.
Therefore, according to Lemma 2 in [18], there exists an ideal control input u∗

i (z̄i(k))
such that φi (zi(k), u

∗
i (z̄i(k))) = y0(k + ni), where z̄i(k) =

[
zTi (k), y0(k + ni)

]
.

Using the ideal control u∗
i (z̄i(k)), we have eTi

(k) = 0 after ni steps. It implies that the
ideal control u∗

i (z̄i(k)) is an n-step deadbeat control.
Then, we define an auxiliary error function for each agent to derive the optimal control

law as

eui(k + ni) = φi (zi(k), ui(k))− y0(k + ni) = gi (zi(k), u
c
i(k)) (ui(k)− u∗

i (z̄i(k))) (7)

where gi (zi(k), u
c
i(k)) = ∂φi (zi(k), u

c
i(k))/∂u

c
i(k) with uc

i(k) ∈ [min {u∗
i (z̄i(k)) , ui(k)} ,

max {u∗
i (z̄i(k)) , ui(k)}]. For convenience, let us introduce the following notations gi(k) =

gi (zi(k), u
c
i(k)) .

By using the approximation function with idea parameters, the unknown nonlinear
functions gi(k) and gi(k)u

∗
i (z̄i(k)) can be rewritten as gi(k) = β∗T

gi φgi(k), gi(k)u
∗
i (z̄i(k)) =

β∗T
fi φfi(k), where φfi(k) ∈ Rmfi and φgi(k) ∈ Rmgi are regression vectors and β∗

fi ∈ Rmfi

and β∗
gi ∈ Rmgi are unknown parameters for those regression vectors. The regression

vectors will be established by a set of membership functions of FRENs to cover operating
range of output of output zi(k) with the numbers of membership mfi and mgi for gi(k)
and gi(k)u

∗
i (z̄i(k)), respectively.

The estimated nonlinear functions of the unknown parameters β∗T
gi and β∗T

fi can be

obtained by ĝi(k) = βT
gi(k)φgi(k), f̂i(k) = βT

fi(k)φfi(k), where βT
gi(k) and βT

fi(k) are ad-
justable parameters of FRENs.
By using gi(k) and gi(k)u

∗
i (z̄i(k)), the error eTi

(k + n) can be rewritten as

eTi
(k + n) = β∗T

gi (k)φgi(k)ui(k)− β∗T
fi (k)φfi(k) = β∗T

i φi(k) (8)

where β∗
i =

[
β∗T
gi , β

∗T
fi

]T
, φi(k) = [φgi(k)ui(k),−φfi(k)]. According to ĝi(k) and f̂i(k), the

estimation of eTi
(k+ n) can be obtained as êTi

(k+ni) = βT
gi(k)φgi(k)ui(k)− βT

fi(k)φfi(k)

= βT
i (k)φi(k) where βi =

[
βT
gi, β

T
fi

]T
. Let us define the estimation error ẽTi

(k + ni) =

êTi
(k + ni)− eTi

(k + ni) = β̃T
i (k)φi(k), where β̃i(k) = β∗

i − βi(k).
To get a better estimation result, a cost function will be defined before adjusting the

parameter βi(k) as Eai(k+ni) = (1/2)

((
ẽTi

(k + ni) + Ĵi(k)
)2
/(

γb + ∥φi(k)∥2
))

, where

γb ≥ 1 is a positive constant. To minimize the cost function Eai(k+ni), the parameters can
be tuned along the steepest descent direction. The corresponding tuning law is established
as follows: β1i(k + ni) = βi(k) − ηi (∂Eai(k + ni)/∂βi(k)), where ηi is a design learning
rate. By applying the chain rule with êTi

(k + ni) and ẽTi
(k), thus, we obtain

∂Eai(k + ni)

∂βi(k)
=

∂Eai(k + ni)

∂ẽTi
(k + ni)

·∂ẽTi
(k + ni)

∂êTi
(k + ni)

·∂êTi
(k + ni)

∂βi(k)
=

ẽTi
(k + ni) + Ĵi(k)

γb + ∥φi(k)∥2
·φi(k) (9)
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By substituting (9) into β1i(k + ni), we have

β1i(k + ni) = βi(k)− ηi

((
ẽTi

(k + ni) + Ĵi(k)
)/(

γb + ∥φi(k)∥2
))

φi(k) (10)

However, the tuning law (10) does not have the ability to deal with the uncertain
control directions. Let us define a previous error ẽhi as ẽhi(k+ ni − j) = eTi

(k+ ni − j)−
βT
i (k)φi(k− j) for j = 0, 1, . . . , v−1, when v is the order of the previous error. By adding

the previous errors, a new tuning law can be obtained as

β2i(k + ni) = β1i(k)− ηi

v−1∑
j=0

(
ẽhi(k + ni − j)φi(k − j)

/(
γb + ∥φi(k − j)∥2

))
(11)

where ηi satisfies ηi > 0.
Finally, a projection algorithm is introduced to the tuning law to ensure the bound-

edness of parameter βi(k). When ∥β2i(k)∥ ≤ N0i, it has βi(k) = β2i(k); otherwise, let
βi(k) = (N0i/∥β2i(k − ni)∥) β2i(k).

The adaptive control object is minimized of the long-term cost function Ji(k) which
can be converted to minimize the Lagrangian ri(k). By tracking the partial derivative
of ri(k) with ui(k) and using the error dynamic in (8), we obtain ∂ri(k + ni)/∂ui(k) =(
γu + ∥gi(k)∥2

)
ui(k)− gi(k)φ

T
fi(k)β

∗
fi + γuei(k).

Setting ∂ri(k + n)/∂ui(k) = 0. Thus, the ideal control law u∗
i (k) can be obtained as

u∗
i (k) =

(
β∗T
fi φfi(k)gi(k)− γuei(k)

) /(
γu + ∥gi(k)∥2

)
.

Functions β∗
fi and gi(k) are unknown but have been approximated as βfi(k) and ĝi(k),

respectively. Thus, the practical control law ui(k) can be given as ui(k) =
(
βT
fi(k)φfi(k)

gi(k)− γuei(k)
/
γu + ∥ĝi(k)∥2

)
. It is clear that the practical control law can be obtained

even the system dynamic has positive or negative on ĝi(k).

4. Experimental Results. In this section, a multi-manipulator system which consists
of a leader agent and five heterogeneous follower agents has been considered to validate the
proposed distributed adaptive controller. The dynamic models of the individual follower
agent are totally unknown and are described as

Σ1 : ẋ11 = u1 − 0.1u1e
−0.1x11 − 0.1

(
1− e−0.2t

)
sin(0.1t)

y1 = x11

Σ2 :

{
ẋ21 = −x22

ẋ22 = −3.2 sin(x21)− 3x22 − 10 cos(x21) tanh(u2)
y2 = x21

Σ3 : ẋ31 = u3 + 0.2u3e
−x31 + 0.1

(
1− e−t

)
sin(0.3t)

y3 = x31

Σ4 :

{
ẋ41 =

(
1.4x2

41/
(
1 + x2

41

))
+ 0.1x3

42 + 0.5x42

ẋ42 =
(
0.1x42/

(
1 + x2

41 + x2
42

))
+
(
5x2

41 tanh(u4)/
(
1 + x2

41 + x2
42

))
y4 = x41

Σ5 :

{
ẋ51 = x52

ẋ52 = sin(x51)− x52 + 3 cos(x52) tanh(u5)
y5 = x51

The communication graph of the multi-manipulator system is depicted in Figure 1.
The dynamic model of the leader mode is given by y0(k + 1) = (1/2) sin(0.01πk/5) +

(1/2) cos(0.01πk/10). Two kinds of parameters need to be designed. The first is the kind
of global parameters: γ = 0.9, γb = 1, v = 2, γu = 1 and γc = 10−4, and the other is that
of local parameters of each distributed controller whose values are listed in Table 1.
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Figure 1. Communication graph for the simulation examples

Table 1. Parameters setting

Parameter Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
ηi 0.1 0.02 0.1 1 0.02
N0i 4 2 4 200 2

The trajectories of the output are depicted in Figure 2. Figure 3 shows the distributed
control efforts of the five agents. The local neighborhood errors of the five followers are
plotted in Figure 4. The estimated cost functions Ĵi, i = 1, 2, 3, 4, 5 are shown in Figure
5.

Figure 2. (color online) Output trajectories of six agents

From the dynamics of the simulation system, it can be seen that the five agents have
positive and negative control directions. From Figures 2-5, one can observe that all the
five followers synchronize to the leader with a bounded neighborhood and all signals in
the closed-loop distributed control system are bounded.
In Figure 2, one can conclude that the initial tracking performances of the five followers

are not ideal, which can also be seen from the big neighborhood tracking errors in Figure 4.
This is owing to that the weights of FRENs are still tuning. After about 300 steps, it can be
observed that the tracking performance improves to be much better. From Figure 4, it can
be obtained that the local neighborhood tracking errors of the five followers are converged
asymptotically to a small neighborhood of zero. Therefore, the simulation results illustrate
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Figure 3. (color online) Control efforts of five followers

Figure 4. (color online) Local neighborhood tracking errors of five followers

the effectiveness of the proposed consensus control method for the heterogeneous nonlinear
MASs.

5. Conclusion. In this paper, the distributed optimal consensus control strategy based
on RL and FRENs for a class of heterogeneous discrete-time nonlinear MASs with un-
known dynamics and uncertain control directions has been developed. The optimal solu-
tions of the coupled HJB equations have been obtained by the RL algorithm implemented
by an actor-critic form with FRENs which are used to estimate the unknown dynamics
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Figure 5. (color online) Estimated unknown cost functions of five followers

and the uncertain control directions. Simulation studies have been conducted on a het-
erogeneous multi-manipulator system to show the effectiveness of the proposed control
strategy.
In the future work, practical issues should be considered in the situation that noises

and un-modeled dynamics exist.
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