
ICIC Express Letters ICIC International c⃝2022 ISSN 1881-803X
Volume 16, Number 2, February 2022 pp. 195–203

MODIFIED PARTICLE SWARM OPTIMIZATION
WITH CHAOS-BASED PARTICLE INITIALIZATION

AND LOGARITHMIC DECREASING INERTIA WEIGHT

Murinto1,2, Agus Harjoko2,∗, Sri Hartati2 and Projo Danoedoro3

1Department of Informatics Engineering
Universitas Ahmad Dahlan, Yogyakarta

Jl. Ringroad Selatan, Kragilan, Tamanan, Bantul, DIY 55191, Indonesia
murintokusno@tif.uad.ac.id

2Department of Computer Science and Electronics
3Department of Geographic
Universitas Gadjah Mada

Sekip Utara, Bulaksumur, Yogyakarta 55281, Indonesia
∗Corresponding author: aharjoko@ugm.ac.id

{ shartati; pdanoedoro }@ugm.ac.id

Received March 2021; accepted June 2021

Abstract. The global optimization problem can be solved using one of the algorithms,
namely particle swarm optimization (PSO). The PSO algorithm is a population optimiza-
tion based on swarm intelligence, which has been widely studied and is widely applied to
various problems. However, PSO is often trapped in local optimal and premature con-
vergence on complex multimodal function problems. To solve this problem, a variant of
particle swarm optimization involves the chaos maps mechanism strategy and the inertia
weight of standard particle swarm optimization. Chaos map is used to produce uniform
particle distribution to improve the quality of the initial position of the particles. While
the inertia weight used here is logarithmic decreasing inertia weight (LogDIW) to help
the algorithm get out of the local optimal and make the particles continue to search in
other areas of the solution space. Extensive experiments on six well-known benchmark
functions with different dimensions show that the proposed PSO is superior or very com-
petitive to several other PSO variants in dealing with complex multimodal problems.
Keywords: Chaos-based, Logarithmic decreasing inertia weight, Particle swarm opti-
mization

1. Introduction. Particle swarm optimization (PSO) is an algorithm introduced by Shi
and Eberhart [1], which shows its capabilities in several applications. PSO is used to solve
global optimization problems. On solving an optimization problem, the PSO applies a
simplified social model; for example, the zoologist might use it to explain individuals’
movement within a group. PSO consists of several particles that collectively move in the
search space in search of a global optimal. One of the weaknesses of the PSO algorithm is
premature convergence. This often causes the search process to stop at local optimal. One
way to solve this problem is to involve chaos in the PSO algorithm. Chaotic maps have
certainty, ergodicity, and stochastic properties. For such reasons, the number generated
from the chaotic system is used to replace the PSO parameter random number.

PSO computing will continuously update the position of the particles until it finds a
globally optimal solution. Compared with other methods, the application of PSO is easy
to implement and has stable convergence characteristics. However, the standard PSO
algorithm has a weakness that is sensitive to setting some of its weights or parameters
and lacks diversity among particles, which can lead to stagnation [2].

DOI: 10.24507/icicel.16.02.195

195



196 MURINTO, A. HARJOKO, S. HARTATI AND P. DANOEDORO

The research conducted by Shi and Eberhart [3] introduced an inertia weight to re-
duce speed overtime to control swarm exploration and exploitation capabilities to achieve
a more precise and efficient swarm convergence when compared to the standard PSO
equation. The inertia weight (w) is considered as a substitute for the maximum velocity
through adjusting the effect of the previous velocities in the process, namely the control
of the momentum of the particles through weighting from the previous velocity. Several
previous studies led to the development of the PSO algorithm. Because PSO is sensitive to
parameter selection, choosing the right parameter will increase its searchability. Research
using Hybrid PSO was conducted by, among others, Higashi and Iba [4], who combined
PSO with Gaussian mutations, which are a combination of ideas from the particle swarm
concept of an evolutionary algorithm. This method combines position and velocity update
rules with a Gaussian mutation. PSO performance can be improved through integration
with other techniques.
A research by Zhang et al. in [5] proposed a two strategy cooperative particle swarm

optimization (TPSO) algorithm, where the algorithms adjust learning factors and inertia
weight. From the convergence analysis it shows the effectiveness of the algorithm. Im-
provement of PSO algorithm can be used to predict the position of multi-axis robotic
manipulators [6] and hybrid hardware-software architecture for neural network trained as
proposed in [7].
The weight of inertia plays an important role in the balancing process between explo-

ration and exploitation. The inertia weight will determine the contribution of the velocity
of the previous particle to the velocity at that time. From the point of view of statistical
analysis, it is believed that the overall performance of the PSO is strongly influenced
by the weight of inertia [8]. Several types of inertia weights include linear and nonlinear
inertia weights, fuzzy rules, random and other strategies based on inertia weights. A large
inertia weight will facilitate global search, while a small inertia weight will facilitate local
search. The dynamic adjustment of inertia weight was introduced by many researchers
who can improve PSO capability. Bansal et al. in [9] proposed a random inertia weight
(RIW) strategy, and experimentally, it was found that this strategy would increase PSO
convergence in the initial iteration of the algorithm. Linear decreasing strategies increase
the efficiency and performance of PSO. It was found experimentally that inertia weights
from 0.9 to 0.4 give very good results [10].
By using the benefits of chaos optimization, the chaotic inertia weight has been proposed

by Feng et al. [11], a comparison between chaotic random inertia weight PSO (CRIWPSO)
and random inertia weight PSO (RIWPSO) has been carried out, and it was found that
the CRIWPSO performed very well. Research conducted by Gao et al. [12] proposed
a PSO algorithm using logarithm decreasing inertia weight (LogDIW). This paper is
organized as follows. Section 2 describes the original PSO algorithm. Section 3 describes
population initialization based on chaos maps. Section 4 presents the modified particle
swarm optimization. Section 5 presents our experimental result and analysis. Section 6
describes the conclusions of our research.

2. Standard Particle Swarm Optimization. The original PSO algorithm is presented
in Equation (1) and Equation (2), respectively.

vt+1
id = w · vtid + c1 · r1 ·

(
ptid − xt

id

)
+ c2 · r2 ·

(
pgd − xt

id

)
(1)

xt+1
ij = xt

ij + vt+1
ij (2)

where c1 and c2 are positive constants. r1 and r2 are two random numbers with values
in the range [0, 1], whereas w is the inertia weight. The ith particles are represented
as Xi = (xi1, xi2, . . . , xid). The best previous position of the ith particle is stored and
represented as Pi = (pi1, pi2, . . . , pid). The index of the best particle among all the particles



ICIC EXPRESS LETTERS, VOL.16, NO.2, 2022 197

in the population is represented by the symbol g. The rate of change in velocity for the
ith particle is represented as Vi = (vi1, vi2, . . . , vid). d is the dimension of the search space.

3. Population Initialization Based on Chaos Maps. Population initialization in-
volves the way particles are randomly distributed within the search space. One of the
population initializations used is to generate a random number. Another strategy used
to replace random numbers is a chaotic map.

Two types of chaos will be described here, namely the logistic map [13] and tent map
[14]. Chaotic maps are used to produce initial particles that are uniformly distributed
and can improve the quality of the initial population. One of the simplest chaotic maps
is the logistic map. One of the simplest chaotic maps is the logistic map, which is written
as Equation (3).

zn+1 = f(µ, zn) = µ ∗ zn(1− zn), n = 0, 1, 2, . . . (3)

where zn represents the nth chaotic variable, zn ∈ (0, 1) except for certain point periods
(0, 0.25, 0.5, 0.75, 1.0). µ is a previously defined constant called the bifurcation coeffi-
cient. When µ increases from 0, the dynamic system generated using Equation (3) will
change from one point to the next until 2n. During the process, µ has a limit value
µt = 3.569945672. In other words, when µ is greater than 4, the whole system becomes
unstable. Here the range of [µt, 4] is generally considered to be the chaotic region of
the whole system. Tent map is studied in dynamic systems mathematics because it has
several interesting properties such as chaotic orbits, simple shapes. The tent map shows
advantages and has a higher iterative speed than the logistic map because the probability
density function (pdf) of the chaos sequence for the tent map is a uniform function, while
pdf for the chaos sequence for the logistic map is the Chebyshev function.

4. Modified Particle Swarm Optimization. It consists of 3 aspects used in this pa-
per, namely the aspect of initialization based on chaos, the use of inertia weights, and
the mechanism of mutation in the position of particles. In the modified PSO (PSOt)
algorithm proposed in this paper, a chaotic map is used to generate particles with unifor-
m distribution in order to improve the quality of the initial population. Meanwhile, the
Gaussian mutation is used as a re-initialization strategy based on Gbest and Pbest to help
the algorithm move away from local optimal when stagnation occurs.

In this study, we proposed an initialization of the position of particles based on chaos
using a logistic map. Use this chaotic-based position initialization function to override
the random initialization standard PSO. In PSO, a larger inertia weight facilitates global
exploration, which allows the algorithm to be able to find a new wider area, while a small
inertia weight tends to facilitate local exploration. The inertia weight value used here
comes from a search using logarithm decreasing inertia weight (LogDIW) [12]. The PSO
in this literature generated only uses changes in weight, whereas in this proposed paper,
apart from using weight, the PSO produced also uses position initialization using chaotic
map and Gaussian mutation as a strategy to increase search diversity.

In this research, we introduced logarithm decreasing inertia weight, which was written
as Equation (4):

w = wmax + (wmin − wmax)× log10 (a+ 10t/Tmax) (4)

where a is a constant for the evolutionary velocity adjustment, here a = 1.
The equation for the change in velocity and position in PSOt can be written as Equation

(5) and Equation (6), respectively.
Velocity Update Equation

vt+1
ij = w ∗ vtij + c1 · CF 1 ∗

(
P t
best,i − xt

ij

)
+ c2 · CF 2 ∗

(
Gbest,i − xt

ij

)
(5)



198 MURINTO, A. HARJOKO, S. HARTATI AND P. DANOEDORO

Position Update Equation

xt+1
ij = xt

ij + vt+1
ij (6)

where i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , d. xt
ij and vtij denote the position and velocity,

respectively. CF1 and CF2 are functions of the map value of the chaotic variables, which
replace the random values r1 and r2 in the standard PSO.
In this research, a mutation was carried out around a single particle, where mutation

would update the individual best position value (Pbest) and the global best position value
(Gbest). This procedure will increase the diversification of the search without increasing
the convergence speed. The evolutionary operator is used to maintain the diversity of
swarm based on Gaussian. Here the diversity searches by means of probability mutations.
The mutation probability value (Pm) can be calculated using Equation (7).

Pm =
Ratem
m

(7)

where m is the number of particles, and Ratem is the mutation rate. The value of Ratem is
determined to be 1 in the first iteration and decreases linearly to 0 at the end of iteration
[12].
The pseudocode of the PSOt algorithm proposed in this paper can be shown in Al-

gorithm 1 and the flowchart of the PSOt algorithm proposed in this paper is shown in
Figure 1.

Algorithm 1: The proposed PSOt algorithm pseudocode

1. Begin

2. Initialize the position of particles using a logistic map

3. Randomize initialization of particle velocity

4. Define fiti as the fitness of particle i

5. Calculate Pm by Equation (7)

6. While (the maximum number of iterations is not reached)

7. For n = 1 to number of particles

8. Determine the best position (Pbest)

9. Determine the best global position (Gbest)

10. Apply a Gaussian mutation to the particle positions of the Pbest and Gbest particles

11. If chaotic variables fall into specific points or small periodic cycles

12. Apply a very small positive random perturbation

13. Map using Equation (3)

14. Else

15. Update the variables using Equation (6) directly

16. End {if}
17. Calculate the weight of inertia (w) using Equation (4)

18. Update the speed and position of the best global particles

19. End {for}
20. End {while}
21. End



ICIC EXPRESS LETTERS, VOL.16, NO.2, 2022 199

Figure 1. Modified particle swarm optimization (POSt) algorithm flowchart

5. Experimental Result and Analysis.

5.1. Experimental setting. Validation of the effectiveness of the PSOt proposed in this
paper was carried out through experimental testing. Tests are carried out on 6 benchmark
functions, namely:

1) Sphere: f1(x) =
∑n

i=1 x
2
i , xi ∈ [−100, 100]

2) Rastrigin: f2(x) =
∑n

i=1 [x
2
i − 10 cos(2πxi) + 10], xi ∈ [−5.12, 5.12]

3) Griewank: f3(x) =
1

4000

∑n
i=1 x

2
i − Πn

i=1 cos
(

x√
i

)
+ 1, xi ∈ [−600, 600]

4) Schaffer: f4(x) = 0.5 +
sin2

√
x2
1+x2

2−0.5

(1.0+0.001(x2
1+x2

2))
2 , xi ∈ [−100, 100]



200 MURINTO, A. HARJOKO, S. HARTATI AND P. DANOEDORO

5) Ackley: f5(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
+ 20 + e, xi ∈ [−32, 32]

6) Rosenbrock: f6(x) =
∑n−1

i=1 100 (xi+1 − x2
i )

2
+ (1− xi)

2, xi ∈ [−30, 30]
The inertia weight used is the logarithmic decreasing inertia weight (LogDIW) [12] and

the initialization of the particle position using the chaos function. The parameters are
determined as follows: the inertia weight value is wmax = 0.9, wmin = 0.4, acceleration
coefficients c1 = c2 = 2, swam size = 40, while the dimension is 30. The effect of the ini-
tialization of the particle position and the inertia weight of the proposed PSO is shown in
this study through several combinations of PSO variants. The chaos function to initialize
the initial position of the particles used is a random map, logistic map, and tent map.

5.2. Experimental result. In this experiment, six benchmark functions were used. Its
dimension is 30 with 50 program runs independently. The number of iterations per run is
1500. The performance criteria are seen from the results: best fitness, worst fitness, mean
fitness, and the standard deviation of fitness. Table 1 shows the results of the experiments
carried out.
From Table 1, it can be seen that the logistic function-based PSO proposed in this study

proved to be better than the standard random-based PSO. From this, it can be concluded
that the initial distribution of the swarm particles can be improved by using a logistic
map for particle initialization. Meanwhile, the convergence of premature population can
be prevented by using Gaussian mutation based on the Pbest and Gbest of the particles.

Table 1. Comparison of best fitness, mean and standard deviation values
for 9 chaotic-based PSO derivatives and inertia weights for 6 benchmark

Chaotic PSO Performance Index
The Benchmark Function

Sphere Rastrigin Griewank Schaffer Ackley Rosenbrock

CIWLM-PSOt

Best Fitness 8.4388E-01 1.5245E+02 8.8771E+00 4.1770E-01 3.6775E+00 1.8841E+03

Mean Fitness 4.5998E-01 6.9144E+01 4.2996E+00 3.3460E-01 2.3223E+00 3.4853E+02
Standard Deviation 1.7760E-01 3.7945E+01 2.4486E+00 4.1964E-02 6.9023E-01 3.7288E+02

Worst Fitnes 1.7325E-01 1.1261E-02 4.1218E-02 2.4099E-01 1.0383E+00 8.7322E+01

LogDIWLM-PSOt

Best Fitness 5.2143E+00 1.9458E+02 1.0043E+00 4.0268E-01 3.8548E+00 2.5710E+03

Mean Fitness 2.7577E+00 9.8204E+01 9.6167E-01 3.4141E-01 2.8876E+00 7.2154E+02
Standard Deviation 1.0391E+00 5.4434E+01 2.8610E-02 3.3296E-02 4.1524E-01 5.4961E+02

Worst Fitness 1.1628E+00 2.1077E-02 8.9875E-01 2.8192E-01 1.9943E+00 2.2413E+02

CDIWLM-PSOt

Best Fitness 4.0036E+00 2.2076E+02 3.0797E-01 4.0903E-01 3.5911E+00 1.4360E+03

Mean Fitness 2.5508E+00 1.0940E+02 2.2548E-01 3.4827E-01 2.8698E+00 7.1271E+02
Standard Deviation 5.8887E-01 4.7851E+01 5.3901E-02 3.4828E-02 3.3040E-01 3.5506E+02

Worst Fitness 1.3401E+00 2.8952E+01 1.1235E-01 2.8157E-01 2.0568E+00 2.7110E+02

CIWRM-PSOt

Best Fitness 2.9572E-01 1.1164E+02 5.8457E-02 3.7866E-01 5.5115E-01 9.0199E+02
Mean Fitness 6.6019E-02 7.3844E+01 1.3901E-02 2.9124E-01 2.2007E-01 2.2785E+02

Standard Deviation 5.7094E-02 2.0421E+01 1.3191E-02 4.9178E-02 1.3770E-01 1.8027E+02
Worst Fitness 1.1903E-02 4.5201E+01 8.9167E-04 1.7336E-01 7.8156E-02 7.1560E+01

LogDIWRM-PSOt

Best Fitness 7.8210E+01 3.3511E+02 9.9636E-01 4.1746E-01 6.9980E+00 6.1246E+04
Mean Fitness 5.7209E+01 3.0646E+02 9.5486E-01 3.6045E-01 6.5687E+00 3.7782E+04

Standard Deviation 1.0385E+01 1.6277E+01 3.8323E-02 2.7515E-02 2.6964E-01 1.0179E+04
Worst Fitness 3.8140E+01 2.7519E+02 8.2339E-01 3.0849E-01 6.0505E+00 1.5635E+04

CDIWRM-PSOt

Best Fitness 1.8573E+02 8.0592E+01 1.0873E+01 4.0485E-01 2.1201E+00 1.3750E+02
Mean Fitness 3.3362E+01 5.0643E+01 6.3583E+00 3.0061E-01 7.4784E-01 5.4337E+01

Standard Deviation 5.5275E+01 1.3252E+01 2.4841E+00 5.9511E-02 7.9433E-01 3.8864E+01

Worst Fitness 8.2150E-33 2.9849E+01 2.1755E+00 1.7892E-01 1.5099E-14 7.3369E-01

CIWTM-PSOt

Best Fitness 1.4399E+04 2.8589E+02 1.3944E+02 4.8533E-01 1.4076E+01 1.1216E+07
Mean Fitness 8.7935E+03 2.4213E+02 9.5828E+01 4.5625E-01 1.1659E+01 6.0220E+06

Standard Deviation 3.0626E+03 2.4869E+01 1.9793E+01 1.8148E-02 1.3083E+00 2.2366E+06

Worst Fitness 3.1984E+03 1.8370E+02 5.7168E+01 4.1989E-01 8.9555E+00 1.7844E+06

LogDIWTM-PSOt

Best Fitness 8.4545E+03 2.7205E+02 1.0362E+02 4.8404E-01 1.4568E+01 6.2060E+06
Mean Fitness 2.4516E+03 2.1734E+02 6.7027E+01 4.4666E-01 9.7654E+00 1.4966E+06

Standard Deviation 2.0294E+03 2.5412E+01 1.7658E+01 2.1409E-02 1.3567E+00 1.3462E+06

Worst Fitness 3.9448E+02 1.6949E+02 3.8176E+01 4.0108E-01 6.6486E+00 1.9701E+05

CDIWTM-PSOt

Best Fitness 8.9062E+03 2.6276E+02 1.0215E+02 4.7847E-01 1.4248E+01 4.5587E+06
Mean Fitness 2.1659E+03 2.1578E+02 6.0447E+01 4.5360E-01 1.0852E+01 1.3756E+06

Standard Deviation 1.9036E+03 2.6334E+01 1.9202E+01 2.2432E-02 1.2862E+00 9.7316E+05
Worst Fitness 3.1055E+02 1.5314E+02 3.0377E+01 3.7119E-01 7.7606E+00 9.6983E+04



ICIC EXPRESS LETTERS, VOL.16, NO.2, 2022 201

(a) (b)

(c) (d)

(e) (f)

Figure 2. (color online) Convergence curve of benchmark functions in 9
PSO variations: (a) Sphere functions; (b) Rastrigin functions; (c) Griewank
functions; (d) Schaffer functions; (e) Ackley functions; (f) Rosenbrock func-
tions



202 MURINTO, A. HARJOKO, S. HARTATI AND P. DANOEDORO

In this way, PSO performance can be increased to a certain extent. Apart from that,
it should also be noted that PSOs based on tent maps, especially tent map-logarithmic
decreasing inertia weight particle swarm optimization (LogDIWTM-PSOt), outperformed
others.
As can be seen in Table 1, the Tent-PSO standard deviation is smaller when compared

to other algorithms. This means that the PSO with initial population initialization using
tent map is relatively more stable. In other words, it further illustrates how important
a uniformly distributed initial particle is for the convergence performance of the PSO
algorithm and decreases the inertia weight linearly to balance local and global searches.
Figure 2 shows a graph of the fitness evolution curve of each algorithm for the six functions
as tested. To show the evolution process clearly, here, the y-axis of Figure 2 shows the
algorithm fitness value. The evaluation process is shown clearly.
In fact, it appears that each algorithm corresponding to each curve shown in Figure

2(a) is run for 1500 iterations. As shown in Figure 2, the point where the tent map-
logarithmic decreasing inertia weight particle swarm optimization (LogDIWTM-PSOt)
curve decreases rapidly indicates the particles are likely to be trapped in the local optimal.
Then the Gaussian mutation is used to help the PSO get out of the local optima and make
the particle continue its search in another area of the solution space so that the global
optimal can be found. In comparison, the curve of the PSO based on the PSO logistic
decreases slowly as the search continues.
Alternatively, Figure 2 illustrates the evolution of the curve from the best convergence

solution to the test function. Here we can also see that the performance of logistic map-
logarithmic decreasing inertia weight particle swarm optimization (LogDIWLM-PSOt)
shows much better performance than other PSO methods. At the same time, it consis-
tently maintains the fast pace of evolution and ultimately converges to the global optimal
effectively.

6. Conclusion. This paper proposes an algorithm for swarm particle optimization using
chaotic maps, namely the tent map and logistic map and the Gaussian mutation mecha-
nism, as a re-initialization strategy based on Pbest and Gbest. The resulting initial particles
are uniformly distributed, which increases low stability. This also helps the PSOt algo-
rithm to continue searching other areas in the practical settlement space. Compared to
different PSO variants, the PSO proposed in this study on 6 benchmark functions shows
that PSOt has better performance in terms of stability, quality of final completion, and
convergence speed. As further research, we plan to implement the PSO algorithm in that
results in image segmentation. The image used is a multispectral image. Likewise, what
is improtant to further research is the qualitative relationship between chaos-based initial-
ization, inertia weight, particle mutations using the Gaussian mutation and the resulting
convergence of the PSO algorithm, will be thoroughly proven and analyzed.

REFERENCES

[1] Y. Shi and R. Eberhart, A modified particle swarm optimizer, 1998 IEEE International Conference
on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
(Cat. No. 98TH8360), pp.69-73, DOI: 10.1109/ICEC.1998.699146, 1998.

[2] F. Hamdaoui, A. Sakly and A. Mtibaa, An efficient multilevel thresholding method for image seg-
mentation based on the hybridization of modified PSO and Otsu method, in Computational Intelli-
gence Applications in Modeling and Control. Studies in Computational Intelligencel, A. Azar and S.
Vaidyanathan (eds.), Springer International Publishing, 2015.

[3] Y. Shi and R. C. Eberhart, Empirical study of particle swarm optimization, Proc. of the 1999 Con-
gress on Evolutionary Computation (CEC99) (Cat. No. 99TH8406), pp.1945-1950, DOI: 10.1109/
CEC.1999.785511, 1999.



ICIC EXPRESS LETTERS, VOL.16, NO.2, 2022 203

[4] N. Higashi and H. Iba, Particle swarm optimization with Gaussian mutation, Proc. of the 2003 IEEE
Swarm Intelligence Symposium (SIS’03) (Cat. No. 03EX706), pp.72-79, DOI: 10.1109/SIS.2003.
1202250, 2003.

[5] Q. Zhang, Y. Wei and W. Song, Two strategy cooperative particle swarm algorithm with inde-
pendent parameter adjustment and its application, International Journal of Innovative Computing,
Information and Control, vol.16, no.4, pp.1203-1223, 2020.

[6] Y.-T. Chen and W.-J. Chen, Optimizing obstacle avoidance trajectory and positioning error of
robotic manipulators using multi group ant colony and quantum-behaved particle swarm optimiza-
tion algorithms, International Journal of Innovative Computing, Information and Control, vol.17,
no.2, pp.595-611, 2021.

[7] T. L. Dang, T. Cao and Y. Hoshino, Hybrid hardware-software architecture for neural networks
trained by improved PSO algorithm, ICIC Express Letters, vol.11, no.3, pp.565-574, 2017.

[8] Y. Peng, X. Y. Peng and Z. Q. Liu, Statistical analysis on parameter efficiency of particle swarm
optimization, Acta Electronica Sinica, vol.32, no.2, pp.209-213, 2004.

[9] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon and A. Abraham, Inertia weight
strategies in particle swarm optimization, 2011 3rd World Congress on Nature and Biologically
Inspired Computing, pp.633-640, 2011.

[10] J. Xin, G. Chen and Y. Hai, A particle swarm optimizer with multi-stage linearly-decreasing inertia
weight, 2009 International Joint Conference on Computational Sciences and Optimization, vol.1,
pp.505-508, 2009.

[11] Y. Feng, G. F. Teng, A. X. Wang and Y. M. Yao, Chaotic inertia weight in particle swarm op-
timization, The 2nd International Conference on Innovative Computing, Information and Control
(ICICIC2007), Kumamoto, Japan, 2007.

[12] Y. L. Gao, X. H. An and J. M. Liu, A particle swarm optimization algorithm with logarithm
decreasing inertia weight and chaos mutation, 2008 International Conference on Computational
Intelligence and Security, vol.1, pp.61-65, 2008.

[13] R. M. May, Simple mathematical models with very complicated dynamics, Nature, vol.261, pp.459-
467, DOI: 10.1038/261459a0, 1976.

[14] H.-O. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals – New Frontiers of Science, Springer,
New York, 1972.


