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Abstract. In this paper, we introduce a new probabilistic relational database model
whose relational attributes may take a set of values associated with a probability for
representing and handling uncertain information. A probabilistic interpretation of binary
relations on sets is proposed to compute uncertain degree of relations on attribute values.
Probabilistic triples over a set are extended to probabilistic triples over a set of sets
to represent multivalued relational attributes. Then, fundamental concepts as schemas,
probabilistic relations, probabilistic relational database and selection operation are defined
coherently and consistently for the new model.
Keywords: Uncertain multivalued attribute, Probabilistic interpretation, Probabilistic
triple, Probabilistic relation, Selection operation

1. Introduction. It is true that the classical relational database model (CRDB) is very
useful for modeling, designing and implementing large-scale systems [1,2], but it is re-
stricted for representing and handling uncertain information in practice. Currently, there
have been many non-classical database models, including probabilistic relational database
models, studied and built to overcome the limitation of CRDB (e.g., [4-13,16-21,24,25]).
However, no model would be so universal that could include all measures and tackle all
aspects of uncertainty of information in the real world.

Probabilistic relational database models are developed and built as extensions of CRDB
based on the probability theory. There are two main approaches corresponding to two
levels to extend CRDB to a probabilistic relational database model [22]: 1) at the relation
level, each relation is defined by a set of tuples that each tuple is associated with a
probability to represent the uncertainty degree of it in the relation; or 2) at the attribute
level, each attribute in a relation is associated with a probability to define the uncertainty
degree of the values that it may take.

For the first approach, as the works in [3-9,24], each tuple of a relation was associated
with a probability in the interval [0, 1] to express the uncertainty membership degree of
that tuple for the relation. The uncertainty degree of the attribute values of a tuple was
inferred from the uncertainty membership degree of that tuple. However, in many real
situations, we do not know exactly the probability as a number in the interval [0, 1] but
only can estimate it as an approximate number in a subinterval of [0, 1]. The models
in [10-13,16,22] were extended with probability intervals associated with each tuple to
overcome the shortcoming.

For the second approach, as in [14,15], each value of an attribute was assigned to a
probability in the interval [0, 1] to represent the uncertain level for that attribute taking
the value. More flexibly, the model in [19] represented the value of each attribute as
a probability distribution on a set. It means that each attribute associated with a set
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of values and a probability distribution expressing possibility that the attribute might
take one of values of the set with a probability computed from the distribution. The
models in [20,21] extended more the model in [19], where a pair of lower and upper bound
probability distributions is used instead of a probability distribution as in [19].
In above mentioned works including both approaches, the attribute of a tuple or an

object only took a single, unique value in a set of values with some probability. For
instance, the attribute DISEASE in [20] represented by DISEASE: ⟨{hepatitis, cirrhosis,
cholecystitis}, 0.9u, 1.5u⟩ said that the patient’s disease might be hepatitis or cirrhosis
or cholecystitis with a probability in the interval [0.3, 0.5]. However, in practice, a patient
may have both hepatitis and cirrhosis or cholecystitis with a determined probability in-
terval, and then the model in [20] cannot express. The shortcoming of above mentioned
models including the models in [20,21] is that those models cannot represent multivalued
relational attributes.
In this paper, we propose a new relational database model for uncertain information,

denoted (URDB), as an extension of the models in [20,21] with multivalued attributes
to overcome the limitation of above mentioned models. This extension is also consistent
with the classical relational database model in [1] and the decision making support system
in [23], where tuples and objects can have multivalued attributes.
The probability base for URDB is presented in Section 2. The proposed URDB model

including fundamental concepts as the schema, relation, database and the query of un-
certain information is introduced in Section 3. Finally, Section 4 concludes the paper and
outlines further research directions in the future.

2. Probability Base. The URDB model is built on a probability base including prob-
ability notions and definitions extended and proposed.
For representing multivalued attributes in URDB, probabilistic triples over a set in

[17,20] are extended to probabilistic triples over a set of sets as follows.

Definition 2.1. Let X be a finite set, a probabilistic triple ⟨V, α, β⟩ over X consists of
a subset V of the set 2X (i.e., the set of all subsets of X) whose elements are disjointed,
a probability distribution function α: V → [0, 1], and a function β: V → [0, 1] such that
α(x) ≤ β(x), ∀x ∈ V and

∑
x∈V β(x) ≥ 1 hold.

Informally, a probabilistic triple ⟨V, α, β⟩ assigns each element x ∈ V a probability
interval [α(x), β(x)] to express the uncertainty degree of x in V . This assignment is con-
sistent in the sense that each element x ∈ V is assigned a probability p(x) ∈ [α(x), β(x)]
such that

∑
x∈V p(x) = 1.

Example 2.1. When examining a patient, a doctor may be unsure about what disease
the patient is suffered from. However, if the doctor is sure that the patient’s diseases
are hepatitis and cirrhosis or cholecystitis with a probability between 40% and 60%, then
this knowledge may be encoded by the extended probabilistic triple ⟨{{hepatitis, cirrhosis},
{cholecystitis}}, 0.8u, 1.2u⟩. Here, u is the uniform distribution function over {{hepatitis,
cirrhosis}, {cholecystitis}}, 0.8u and 1.2u are probability distribution functions α and β
respectively with α(x) = 0.8u(x) = 0.8(1/2) = 0.4 and β(x) = 1.2u(x) = 1.2(1/2) = 0.6,
∀x ∈ {{hepatitis, cirrhosis}, {cholecystitis}}.

We note that an element e in X is also considered as a special set {e} on X; thus, a
probabilistic triple ⟨{{e1}, {e2}, . . . , {ek}}, α, β⟩ can be written as ⟨{e1, e2, . . . , ek}, α, β⟩
for simplicity. Also, “an extended probabilistic triple” is called “a probabilistic triple”.
For computing uncertain degree of relations on attribute values in URDB, we propose

a probabilistic interpretation of binary relations on sets as below.
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Definition 2.2. Let A and B be sets, U and V be value domains, and θ be a binary rela-
tion from {=, ̸=,≤,≥, <,>,⊆,⊇}. The probabilistic interpretation of the relation A θ B,
denoted Pr(A θ B), is a value in [0, 1] that is defined by

1) Pr(A θ B) = p(u θ v|u ∈ A, v ∈ B), where A is a subset of U , B is a subset of V and
θ ∈ {=, ̸=,≤, <,≥, >} assumed to be valid on (U × V ), p(u θ v|u ∈ A, v ∈ B) is the
conditional probability of u θ v given u ∈ A and v ∈ B.

2) Pr(A θ B) =

{
p(u ∈ B|u ∈ A), θ is the relation ⊆
p(u ∈ A|u ∈ B), θ is the relation ⊇

where A and B are two subsets

of U , p(u ∈ B|u ∈ A) is the conditional probability for u ∈ B given u ∈ A and
p(u ∈ A|u ∈ B) is the conditional probability for u ∈ A given u ∈ B.

We note that, the probabilistic interpretation of binary relations on sets defined here
is an extension of that in [21] with relations “⊆” and “⊇”; meanwhile, no probabilistic
interpretation of binary relations on sets was proposed in [20].

Example 2.2. Let A = {3, 4} and B = {4, 5} be two sets on the domain {1, 2, 3, 4, 5, 6}.
Then Pr(A = B) = p(u = v|u ∈ A, v ∈ B) = p(u = v|u ∈ {3, 4}, v ∈ {4, 5}) = 0.25 and
Pr(A ⊆ B) = p(u ∈ B|u ∈ A) = p(u ∈ {4, 5}|u ∈ {3, 4}) = 0.5.

In this work, we use the combination strategies of probability intervals in [17] to com-
pute the probability intervals of the conjunction, disjunction or difference event of two
events. Let two events e1 and e2 have probabilities in the intervals [L1, U1] and [L2, U2],
respectively. Then the probability intervals of the conjunction event e1 ∧ e2, disjunction
event e1 ∨ e2, or difference event e1 ∧ ¬e2 can be computed by alternative strategies as
follows:

1) Independence conjunction, disjunction, and difference strategies, denoted ⊗in, ⊕in,
and ⊖in respectively, are determined by
• [L1, U1]⊗in [L2, U2] ≡ [L1.L2, U1.U2]
• [L1, U1]⊕in [L2, U2] ≡ [L1 + L2 − (L1.L2), U1 + U2 − (U1.U2)]
• [L1, U1]⊖in [L2, U2] ≡ [L1.(1− U2), U1.(1− L2)]

2) Mutual exclusion conjunction, disjunction, and difference strategies (when e1 and e2
are mutually exclusive), denoted ⊗me, ⊕me, and ⊖me respectively, are determined by
• [L1, U1]⊗me [L2, U2] ≡ [0, 0]
• [L1, U1]⊕me [L2, U2] ≡ [min(1, L1 + L2),min(1, U1 + U2)]
• [L1, U1]⊖me [L2, U2] ≡ [L1,min(U1, 1− L2)]

3) Positive correlation conjunction, disjunction, and difference strategies (when e1 implies
e2, or e2 implies e1), denoted ⊗pc, ⊕pc, and ⊖pc respectively, are determined by
• [L1, U1]⊗pc [L2, U2] ≡ [min(L1, L2),min(U1, U2)]
• [L1, U1]⊕pc [L2, U2] ≡ [max(L1, L2),max(U1, U2)]
• [L1, U1]⊖pc [L2, U2] ≡ [max(0, L1 − U2),max(0, U1 − L2)]

4) Ignorance conjunction, disjunction, and difference strategies, denoted ⊗ig, ⊕ig, and
⊖ig respectively, are determined by
• [L1, U1]⊗ig [L2, U2] ≡ [max(0, L1 + L2 − 1),min(U1, U2)]
• [L1, U1]⊕ig [L2, U2] ≡ [max(L1, L2),min(1, U1 + U2)]
• [L1, U1]⊖ig [L2, U2] ≡ [max(0, L1 − U2),min(U1, 1− L2)]

3. Proposed URDB Model. As in CRDB, fundamental concepts in URDB are the
schema, relation and database. A URDB schema consists of a set of relational attributes
respectively associated with domains that define probabilistic triples representing uncer-
tain values of those attributes. The URDB schema is extended from that of the models
[20,21] with uncertain multivalued attributes as follows.

Definition 3.1. A URDB schema is a pair R = (U , P ), where

1) U = {A1, A2, . . . , Ak} is a set of pairwise different attributes.
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2) P is a function that maps each attribute A ∈ U to the set of all probabilistic triples on
the value domain of A.

For simplicity, the notation R(U , P ) and R can be used to denote R = (U , P ).
A URDB relation is an instance of a URDB schema, where each relational attribute

may take more than one uncertain value represented by a probabilistic triple. The UR-
DB relation is extended from that of the models in [20,21] with uncertain multivalued
attributes as the following definition.

Definition 3.2. Let U = {A1, A2, . . . , Ak} be a set of k pairwise different attributes. A
URDB relation r over the schema R(U , P ) is a finite set of elements {t1, t2, . . . , tn}, where
each element ti = (⟨Vi1, αi1, βi1⟩, ⟨Vi2, αi2, βi2⟩, . . . , ⟨Vik, αik, βik⟩) is a list of k probabilistic
triples such that ⟨Vij, αij, βij⟩ belongs to the set P (Aj) and Vij ̸= ∅, for every i = 1, 2, . . . , n
and j = 1, 2, . . . , k.

Each element t in the relation r over R(U , P ) is called a tuple on U . For each tuple
ti, the probabilistic triple ⟨Vij, αij, βij⟩ represents an uncertain valued set of the attribute
Ai of the tuple ti. We write ti.Ai or ti[Ai] to denote ⟨Vij, αij, βij⟩.
Note that, if we only care about a unique relation over a schema, then we can unify its

symbol name with its schema’s name.

Example 3.1. In the database about patients at the clinic of a hospital, a simple URDB
relation, named PATIENT, over the URDB schema PATIENT({NAME,AGE,DISEA-
SE,D COST}, P ) can be given as Table 1.

Table 1. Relation PATIENT

NAME AGE DISEASE D COST
⟨{Oliver}, u, u⟩ ⟨{65}, u, u⟩ ⟨{lung cancer, tuberculosis}, 0.6u, 1.2u⟩ ⟨{30, 35}, 0.7u, 1.3u⟩
⟨{Blair}, u, u⟩ ⟨{43, 44}, u, u⟩ ⟨{{hepatitis, cirrhosis}, {cholecystitis}}, 0.9u, 1.3u⟩ ⟨{6, 7}, 0.8u, 1.4u⟩
⟨{Alice}, u, u⟩ ⟨{36}, u, u⟩ ⟨{cholecystitis}, u, u⟩ ⟨{8}, u, u⟩
⟨{Anne}, u, u⟩ ⟨{15}, u, u⟩ ⟨{{bronchitis, angina}}, u, u⟩ ⟨{7}, u, u⟩

In the relation, the attributes NAME, AGE, DISEASE and D COST describe the infor-
mation about the name, age, disease and daily treatment cost of each patient, respectively.
In reality, while diagnosing, the disease of each patient is not always determined certain-
ly by the physicians. Similarly, the daily treatment cost for patients is also not known
definitely even as the patients know about their diseases. Here, the conventional unit for
the daily treatment cost is 1 (USD), u is the uniform distribution function as presented in
Example 2.1. Note that, for each attribute A in the schema PATIENT, P (A) includes
all probabilistic triples on the domain of A (Definition 3.1).
The URDB relational database is defined as an extension of CRDB and the probabilistic

relational databases in [20,21] as follows.

Definition 3.3. A URDB relational database over a set of attributes is a set of URDB
relations corresponding to the set of their URDB schemas.

As in CRDB model, the selection is a basic algebraic operation in URDB model for
querying data on relations of databases. The selection operation in URDB is extended
from that of the models in [20,21] taking account of uncertain multivalued relational
attributes. Before defining the selection operation, we present the formal syntax and
semantics of selection expressions and conditions as below.

Definition 3.4. Let R be a URDB schema and X be a set of relational tuple variables.
Then selection expressions are inductively defined and have one of the following forms.

1) x.A θ c, where x ∈ X, A is an attribute in R, θ is a binary relation from {=, ̸=,≤,
≥, <,>,⊆,⊇}, and c is a single value or a set of values.
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2) x.A1 =⊗ x.A2, where x ∈ X, A1 and A2 are two different attributes in R, and ⊗ is a
probabilistic conjunction strategy.

3) E1 ⊗ E2, where E1 and E2 are selection expressions on the same relational tuple
variable, and ⊗ is a probabilistic conjunction strategy.

4) E1 ⊕ E2, where E1 and E2 are selection expressions on the same relational tuple
variable, and ⊕ is a probabilistic disjunction strategy.

Example 3.2. Consider the schema PATIENT in Example 3.1, the selection of “all
patients who get hepatitis and pay the daily treatment cost over 6 USD” can be expressed
by the selection expression x.DISEASE = hepatitis⊗ x.D COST > 6.

Now, selection conditions in URDB are formally defined based on selection expressions
as follows.

Definition 3.5. Let R be a URDB schema. Then selection conditions are inductively
defined as follows.

1) If E is a selection expression and [L,U ] is a subinterval of [0, 1], then (E)[L,U ] is a
selection condition.

2) If ϕ and ψ are selection conditions on the same tuple variable, then ¬ϕ, (ϕ ∧ ψ),
(ϕ ∨ ψ) are selection conditions.

Example 3.3. Given the schema PATIENT in Example 3.1, the selection of “all pa-
tients who are over 40 years old with a probability of at least 0.8 or have tuberculosis
and pay the daily treatment cost not less than 30 USD with a probability from 0.5 to
0.6” can be done using the selection condition (x.AGE > 40)[0.8, 1] ∨ (x.DISEASE =
tuberculosis⊗ x.D COST ≥ 30)[0.5, 0.6].

The probabilistic interpretation (i.e., semantics) of selection expressions in URDB is
extended from that of the models [20,21] with the probabilistic interpretation of binary
relations on sets as below.

Definition 3.6. Let R be a URDB schema, r be a relation over R, x be a tuple variable,
and t be a tuple in r. The probabilistic interpretation of selection expressions with respect
to R, r and t, denoted by ProbR,r,t, is the partial mapping from the set of all selection
expressions to the set of all closed subintervals of [0, 1] that is inductively defined as follows.

1) ProbR,r,t(x.A θ c) =
[∑

v∈V α(v).P r(v θ c),min
(
1,
∑

v∈V β(v).P r(v θ c)
)]
, where t.A

= ⟨V, α, β⟩.
2) ProbR,r,t(x.A1 =⊗ x.A2) =

[∑
v∈V α(v).P r(v1 = v2),min

(
1,
∑

v∈V β(v).P r(v1 = v2)
)]
,

where t.A1 = ⟨V1, α1, β1⟩, t.A2 = ⟨V2, α2, β2⟩ and [α(v), β(v)] = [α1(v1), β1(v1)] ⊗
[α2(v2), β2(v2)], ∀v = (v1, v2) ∈ V = V1 × V2.

3) ProbR,r,t(E1 ⊗ E2) = ProbR,r,t(E1)⊗ ProbR,r,t(E2).
4) ProbR,r,t(E1 ⊕ E2) = ProbR,r,t(E1)⊕ ProbR,r,t(E2).

Intuitively, ProbR,r,t(x.A θ c) is the probability interval for the attribute A of the tuple
t having a value v such that v θ c, while ProbR,r,t(x.A1 =⊗ x.A2) is the probability interval
for the attributes A1 and A2 of the tuple t having values v1 and v2, respectively, such that
v1 = v2.

Example 3.4. Let R denote the schema PATIENT and r denote the relation PATIENT
in Example 3.1. Consider the second tuple in r, denoted by t2. We have

ProbR,r,t2(x.DISEASE ⊇ {hepatitis, cirrhosis})
= [0.9u({hepatitis, cirrhosis}).P r({hepatitis, cirrhosis} ⊇ {hepatitis, cirrhosis})

+ 0.9u({cholecystitis}).P r({cholecystitis} ⊇ {hepatitis, cirrhosis}),
min(1, 1.3u({hepatitis, cirrhosis}).P r({hepatitis, cirrhosis} ⊇ {hepatitis, cirrhosis})



246 H. NGUYEN, T.-N. NGUYEN AND T.-T.-N. TRAN

+1.3u({cholecystitis}).P r({cholecystitis}⊇{hepatitis, cirrhosis}))]
= [0.9× 0.5× 1.0 + 0.9× 0.5× 0.0,min(1, 1.3× 0.5× 1.0 + 1.3× 0.5× 0.0)]

= [0.45, 0.65].

The satisfaction (i.e., semantics) of selection conditions in URDB is defined as below.

Definition 3.7. Let R be a URDB schema, r be a relation over R, and t ∈ r. The satis-
faction of selection conditions under ProbR,r,t is defined as follows.

1) ProbR,r,t |= (E)[L,U ] if and only if (iff) ProbR,r,t(E) ⊆ [L,U ].
2) ProbR,r,t |= ¬ϕ iff ProbR,r,t |= ϕ does not hold.
3) ProbR,r,t |= ϕ ∧ ψ iff ProbR,r,t |= ϕ and ProbR,r,t |= ψ.
4) ProbR,r,t |= ϕ ∨ ψ iff ProbR,r,t |= ϕ or ProbR,r,t |= ψ.

Note that, in CRDB, the concepts of selection expression and selection condition are
identical, where probability intervals [L,U ] in selection conditions are always equal to
[1.0, 1.0]. This also means that the satisfaction of selection conditions in CRDB is a
special case of that in URDB.
Now, the selection operation on a relation in URDB is defined as follows.

Definition 3.8. Let R be a URDB schema, r be a relation over R, and ϕ be a selection
condition over a tuple variable x. The selection on r with respect to ϕ, denoted by σϕ(r),
is the relation r∗ = {t ∈ r|ProbR,r,t |= ϕ} over R, including all satisfied tuples of the
selection condition ϕ.

Example 3.5. Let r denote the relation PATIENT in Example 3.1 and R denote its
schema. The query “Find all patients who are over 40 years old with a probability of at
least 0.9, and have both hepatitis and cirrhosis and pay the daily treatment cost not less
than 6 USD with a probability between 0.3 and 0.7” can be done by the selection operation
σϕ(PATIENT ), where ϕ = (x.AGE > 40)[0.9, 1]∧ (x.DISEASE ⊇ {hepatitis, cirrhosis}
⊗inx.D COST ≥ 6)[0.3, 0.7].

Only the second tuple t2 of the relation PATIENT in Example 3.1 satisfies ϕ, because
ProbR,r,t2(x.AGE > 40) = [u(43) × Pr(43 > 40) + u(44) × Pr(44 > 40),min(1, u(43) ×
Pr(43 > 40)+u(44)×Pr(44 > 40))] = [0.5×1+0.5×1,min(1, 0.5×1+0.5×1)] = [1, 1] ⊆
[0.9, 1],ProbR,r,t2(x.D COST ≥ 6) = [0.8u× Pr(6 ≥ 6) + 0.8u× Pr(7 ≥ 6),min(1, 1.4u×
Pr(6 ≥ 6) + 1.4u × Pr(7 ≥ 6))] = [0.8 × 0.5 × 1 + 0.8 × 0.5 × 1,min(1, 1.4 × 0.5 × 1 +
1.4× 0.5× 1)] = [0.8, 1].
From the result of the computation in Example 3.4, we have ProbR,r,t2(x.DISEASE ⊇

{hepatitis, cirrhosis} ⊗in x.D COST ≥ 6) = [0.45, 0.65] ⊗in [0.8, 1] = [0.36, 0.65] ⊆
[0.3, 0.7].
For the other tuples, one has ProbR,r,ti(x.DISEASE ⊇ {hepatitis, cirrhosis} ⊗in x.

D COST ≥ 6) = [0, 0] ̸⊂ [0.3, 0.7], ∀i ̸= 4. Thus, the result of the query is as Table 2.

Table 2. Relation σϕ (PATIENT)

NAME AGE DISEASE D COST

⟨{Blair}, u, u⟩ ⟨{43, 44}, u, u⟩ ⟨{{hepatitis, cirrhosis},
{cholecystitis}}, 0.9u, 1.3u⟩ ⟨{6, 7}, 0.8u, 1.4u⟩

As for CRDB, the selection operation in URDB is not dependent on the order of
selection conditions as the following theorem.

Theorem 3.1. Let r be a relation over the schema R in URDB, ϕ1 and ϕ2 be two selection
conditions. Then

σϕ1(σϕ2(r)) = σϕ2(σϕ1(r)) (1)
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Proof: Let r1 = σϕ1(r), r2 = σϕ2(r) and r1∧2 = σϕ1∧ϕ2(r). Then for each t ∈ r, we have

σϕ1(σϕ2(r)) = {t ∈ r2|ProbR,r2,t |= ϕ1}
= {t ∈ r|(ProbR,r,t |= ϕ2) ∧ (ProbR,r2,t |= ϕ1)}
= {t ∈ r|(ProbR,r,t |= ϕ2) ∧ (ProbR,r,t |= ϕ1)} (because of r2 ⊆ r)

= {t ∈ r|(ProbR,r,t |= ϕ1 ∧ ϕ2)} (Definition 3.7)

= σϕ1∧ϕ2(r).

Thus, the equation σϕ1(σϕ2(r)) = σϕ1∧ϕ2(r) is proven. The equation σϕ2(σϕ1(r)) =
σϕ2∧ϕ1(r) is similarly proven. Since ϕ1 ∧ ϕ2 ⇔ ϕ2 ∧ ϕ1. So, Theorem 3.1 is proven.

4. Conclusions. We have presented a new relational database model whose relational
attributes may take more than one uncertain value represented by an extended proba-
bilistic triple. A probabilistic interpretation of binary relations on sets has proposed for
defining the selection operation to query uncertain information expressed by relations of
this model.

In the next steps, we will extend algebraic operations in the classical relational database
model as projection, Cartesian product, join, intersection, union, difference for the new
model and build a management system with the language like SQL for querying and
manipulating uncertain information in the real world applications.
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