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Abstract. This paper extends the momentum method using an adaptive differential
filter to the measurement-based optimization of an objective function with multivariable
decision variables. The proposed method is a model-free real-time optimization algorithm
with switching. Further, we define the signal separation problem from the dynamics of
multi-cells to that of a single cell based on the assumption that the sum of the CO2

uptakes of a crassulacean acid metabolism plant is a linear combination of delayed os-
cillation waves of cells. We apply the proposed momentum method to estimating delay
sequences of CO2 uptakes. Finally, we perform simulations using MATLAB/Simulink to
verify the proposed method.
Keywords: Crassulacean acid metabolism, Switching optimizer, Momentum optimiza-
tion method

1. Introduction. In biological plants, the circadian rhythms play important roles in
gene expressions, photosynthesis, growth, and many other physiological processes. The
plant circadian rhythm is composed of many self-sustained oscillations that synchronize
with each other. Precise and ecological control of the circadian rhythm provides a key
technology for enhancing the plant growth in a closed cultivation system where light-
dark cycles change within a 24-h period [1]. Climatic extremes are currently threatening
agricultural sustainability all over the world. CAM (Crassulacean Acid Metabolism)
plants show remarkable metabolic plasticity for modulating nocturnal and diurnal CO2

uptake and have been identified as competitive biomass accumulators compared to many
C3 and C4 crops. One approach to increasing plant water-use efficiency is to introduce
CAM into C3 crops [2]. Computational modeling of CAM accelerates the improvement of
CAM crops in terms of biomass productivity and quality-related attributes [3]. Although
a complex mathematical model of plants is combined with the integration of experimental
data for gene expression, protein abundance, metabolite concentration, a modeling process
is a complicated task. It is necessary to simplify the model for control design by using
metabolic processes. Blasius et al. investigated the mechanism of endogenous circadian
photosynthesis oscillations of plants performing CAM in terms of a nonlinear theoretical
model [4, 5]. The model showed regular endogenous limit cycle oscillations that were stable
for a wide range of temperatures, in a manner that complies well with experimental data.
The nonlinear dynamical model of CAM can be discussed from the control theoretical
viewpoint. The state-variables of the nonlinear dynamic equations denote an internal
CO2 concentration, a malate concentration in the cytoplasm, a malate concentration in
the vacuole, and an order of the tonoplast membrane. The input variables are as follows:
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an external CO2 concentration, a light intensity, and temperature. A dynamic estimator
of the tonoplast order and a fuzzy identifier of the nonlinear function in the dynamics
of the tonoplast order have been proposed [6]. Further, the frequency and phase-shift
controllers were proposed using an external CO2 concentration and light intensity as inputs
[7]. Although these estimators and controllers require information on the state variables
of a single cell, they are not directly measurable. Thus, we proposed a reconstruction
method of the internal states of a single cell by using the CO2 uptake from outside
as the measurement data. The sum of the CO2 uptake of all cells can be measured;
however, the CO2 uptake for each cell cannot be measured. The information about the
states of each cell is required to control the plant rhythm. Thus, these states need to
be estimated using a real-time optimization method based on the whole CO2 uptakes as
the available measurements. Kawasaki et al. introduced a model of the sum of the CO2

uptakes as a linear combination of delayed oscillation waves of cells [8]. By using the
model, the CO2 uptake for each cell should separate from whole CO2 uptakes that are
collected online using a CO2 analyzer. Thus, the parameter estimation problem of delayed
oscillation waves of cells is formulated as a real-time optimization with multivariable
decision variables. By solving this problem, a control of the plant biological rhythms
becomes possible. Kawasaki et al. extended the momentummethod of the gradient descent
algorithm for a single variable to a real-time optimization application case by using the
adaptive differential filter to estimate delay sequences of the CO2 uptake [8]. The proposed
method was calculating the ratio of the time-derivative of the objective function and
that of the decision function as the gradient. This method is valid for a single decision
variable even if the objective function is multimodal. However, there are several decision
parameters in the separation of the delayed oscillation waves in CAM plants. The previous
paper [8] presents an instance of a signal separation simulated using two optimizers of
a single decision parameter when the number of the decision parameters was two. The
second optimizer used the measurement data with a short delay to avoid interfering the
first optimizer. However, the calculated values of the objective function and the decision
variables did not converge.
In this paper, the momentum method using the adaptive differential filter is extended

for a measurement-based optimization of an objective function with multivariable deci-
sion variables. Thus, we propose a switching optimizer with single variable optimizers to
obtain the partial derivatives of the objective function. To evaluate the performance of
the switching optimizer, we perform a numerical simulation of a time-varying quadratic
objective function in two decision variables. Finally, we apply the proposed switching
optimizer to the signal separation problem of the CAM plant. Our main contribution
in this paper is to propose a switching law that allows us to apply the adaptive veloc-
ity estimator to estimating a gradient with respect to multiple decision variables. The
simulation results of the time-varying quadratic objective function and the signal separa-
tion problem of the CO2 uptake show the switching optimizer converges to the optimal
decision parameters.
This paper is organized as follows. Section 2 introduces the switching momentum

optimizer using the adaptive velocity estimator. Section 3 defines the signal separation
problem of CAM plants and applies the momentum optimizer to the problem. Conclusions
are given in Section 4.

2. Momentum Method in Optimization Using Velocity Estimator. RTO (Real-
Time Optimization) is a category of closed-loop control that aims at optimizing process
performance in real time for systems. The CO2 analyzer can measure the whole CO2

uptake. We estimate the parameters of the whole CO2 uptake by using RTO method.
Particularly, we propose a gradient descent method with momentum applicable to RTO
by replacing the gradient of an objective function with respect to a decision variable with
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a ratio of the time derivatives of the objective function and the decision variable. The
time derivatives are estimated by using the adaptive velocity estimator [9, 10].

2.1. Gradient calculation. If the decision parameter, d(t), is single and a function of
time, the gradient of the objective function, f(d(t)) with respect to the decision variable
can be written as

f ′(d(t)) =
ḟ(d(t))

ḋ(t)
(1)

where f ′(d(t)) denotes a derivative of f(d) with respect to d, and ḟ(d(t)) and ḋ(t) denote
derivatives with respect to t, respectively. This equation allows us to estimate the gradient
in real time by using the time derivatives of data sequences.

2.2. Adaptive velocity estimator. We have proposed an adaptive observer for esti-
mating the time-derivatives whose upper bounds are known [9, 10].

The estimate, ˆ̇f(t) = θ̂1(t), of the derivative of the signal f(t) is given by the following
adaptive observer and the update laws:

˙̂
f(t) = −k

(
f̂(t)− f(t)

)
+ θ̂1(t)− ϵ̂(t) sgn

(
f̂(t)− f(t)

)
(2)

where f̂(t) is an estimate of f(t), k denotes a positive constant parameter, and θ̂1(t) and
ϵ̂(t) denote adjustable parameters derived by the following update laws:

˙̂
θ1(t) = −γ1

(
f̂(t)− f(t)

)
(3)

˙̂ϵ(t) =
∣∣∣f̂(t)− f(t)

∣∣∣ (4)

where γ1 denotes a positive constant. The estimate of ḟ(t) is given by

ˆ̇f = θ̂1(t) = −
∫ t

0

γ1

(
f̂(τ)− f(τ)

)
dτ (5)

We refer to this estimator as the adaptive velocity estimator.

2.3. Momentum method in RTO. By defining f ∈ R as the objective function and
d ∈ R as a decision variable, the continuous-time momentum gradient descent [8] for
searching a minimum of the objective function is given by

d̈(t) + aḋ(t) = c∇f(d(t)) = cf ′(d(t)) (6)

where f ′(d(t)) denotes the first order derivative of f(d) with respect to d, ḋ(t) and d̈(t)
denote the first order and second order derivatives of d(t) with respect to time t, re-
spectively. The constant parameters a and c denote the momentum coefficient and the
learning rate, respectively.

Replacing f ′(d(t)) to the ratio between the time derivatives of the objective function
and the decision variable, we have

d̈(t) = −aḋ(t)− cḟ(d(t))
/
ḋ(t) (7)

In the above equation, we can use the estimate ˆ̇f(d(t)) obtained by the adaptive velocity

estimator instead of the time derivative, ḟ(d(t)). The proposed optimizer is given by

d̈(t)ḋ(t) + a
(
ḋ(t)

)2

= c ˆ̇f(d(t)) (8)

The time derivative ḋ(t) can be obtained by using a differential equation solver via
Simulink as shown in Figure 1.
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Figure 1. Momentum method with a single decision variable via Simulink

To extend to multivariable case, we propose the switching optimizer by using multiple
single variable optimizers to obtain the partial derivatives of the objective function. The
switching optimizer with two decision variables is given by d̈(t) = −a1ḋ1(t)− c1ḟ(d1(t))

/
ḋ1(t), t ∈ [2n∆, (2n+ 1)∆)

ḋ1(t) = 0, t ∈ [(2n+ 1)∆, (2n+ 2)∆)
(9)

 d̈2(t) = −a2ḋ2(t)− c2ḟ(d2(t))
/
ḋ2(t) t ∈ [(2n+ 1)∆, (2n+ 2)∆)

ḋ2(t) = 0, t ∈ [2n∆, (2n+ 1)∆) n = 0, 1, 2, . . .
(10)

where ∆ is a design parameter that means a time interval to execute one optimizer and is
tuned manually so that the objective function is smaller. The proposed optimizer updates
each decision variable independently for each time interval.

2.4. Numerical examples. The parameters of the adaptive velocity estimator are se-
lected as k = 10 and γ1 = 30. We consider the following time-varying parabolic function
in two variables:

f(x1, x2, t) = 10

(
x1 −

1

t+ 1

)2

+ (x2 − 1)2 (11)

where t denotes a time variable. We can search the minimum value of the parabolic
function by using the measurement f(x1, x2, t) for each time step. In this example, we
can apply the switching optimizer by regarding the objective function as f(x1, x2, t) and
the decision variable as x1, x2. The switching optimizer can be implemented in Simulink
shown in Figure 2, where switching is achieved by using a rectangular pulse function with
a period of 1 [sec], an amplitude of 1, and a duty ratio of 50%. The period of the pulse
function is tuned manually so that the objective function is smaller. Other parameters of
the pulse function are fixed values.
Figure 3 shows the convergence processes of the objective function and the decision

variables. The parameters and the initial values are selected as indicated in Table 1. The
swithing optimizer converges to the minimum value of the objective function.
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Figure 2. Switching optimizer for two decision variables via Simulink
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Figure 3. Convergence processes of the objective function and the decision
variables each time step: (left) the objective function f(x1, x2, t), and (right)
decision variables

Table 1. Parameters in the switching optimizer

Variables Optimizer 1 Optimizer 2

a1, a2 1500 1500
c1, c2 750 500

x1(0), x2(0) 0.8 0
x′
1(0), x

′
2(0) 12 12

3. Signal Separation of CAM. The proposed switching optimizer is applied to the
signal separetion problem of CAM.

3.1. Minimal CAM model. The CAM model that we used has been previously studied
by Blasius et al. (see [4, 5]) and herein, we only outline the minimal CAM model. The
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model can be characterized by the major reactant pools of CAM that generate the carbon
flow during the circadian cycle. The pool concentrations are as follows:

• internal CO2 concentration, w;
• malate concentration in the cytoplasm, x;
• malate concentration in the vacuole, y; and
• z denotes a variable that describes the ordering of the lipid molecules in the tonoplast
membrane.

These are the dynamic variables of the cyclic process, which are connected by the flows,
u1, u2, and u3, during the gain and loss terms of the metabolites. The model depends on
three external control parameters: temperature, T , light intensity, L, and external CO2

concentration, Cext. The CAM model of a single cell can be rewritten in the state-space
form as follows:

˙̃x = f̃ (x̃, L, T ) + g̃1(w)(Cext(t)− w) + g̃2L(t)

x̃ =


w
x
y
z

 , f̃ =



1

ϵ
(−u2 +Rco2)

1

ϵ
(−u1 + u2)

u1

1

τ
(g(z, T )− y)



g̃1 =


1

ϵ

cJ
exp(αw)

0
0
0

 , g̃2 =


w

ϵ

0
0
0





(12)

u1 = cx− y

z

u2 =
w

x
− x

u3 = Jco2 − Cco2 +Rco2

Jco2 = cJ
(Cext(t)− w)

exp(αw)

Cco2 = L(t)w

Rco2 = cR
LK

L(t) + LK

w1

w + w1



(13)

where the variables and the parameters are defined as follows:
w, x, y, and z: states variables
T : temperature, control parameter
L: light intensity, control parameter
Cext: external CO2 concentration, control parameter
ϵ: time constant
τ : time constant
c, cJ , cR, LK , w1, α: constants
g(z, T ): thermodynamic equilibrium value of malate concentration in the vacuole
u1: the difference between malate influx and efflux into and out of the vacuole, modeled

with the dynamic hysteresis
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u2: the difference between malate production from CO2 fixation by phosphoenolpyru-
vate carboxylase (PEPc) and its depletion by decarboxylation

u3: the difference between CO2 influx and efflux
Jco2: CO2 uptake from outside
Cco2: CO2 consumption by photosynthesis, which is directly proportional to the external

control parameter light intensity, L(t)
Rco2: CO2 production by respiration
Blasius et al. calculated the dynamic behavior by using the dimensionless variables with

parameters [4]: Cext = 1, L(t) = 1, T = 0.2238, 0.2242, 0.2246, 0.2250, 0.2254, c = 5.5,
cJ = 1, cR = 1, ε = 0.001, τ = 0.35, α = 1.5, w1 = 0.1, LK = 0.5, and R = 0.1. The
nonlinear function g(z, T ) is shown in [4].

3.2. Signal separation. The biological clock is a spatiotemporal product of many weak-
ly coupled individual oscillators, defined by the metabolic constraints of CAM [11]. Taka-
hashi et al. showed that the shoot apex is composed of an ensemble of coupled clocks
that influence rhythms in roots [12]. We make the following assumptions about CAM
dynamics.

1) CO2 uptake for each cell is proportional to cell volume.
2) Cells are connected by vascular bundle to export photosynthetic products. Delays in

cell dynamics result from these transport delays.

We express the whole CO2 uptake model as

Jall
co2(t) =

∑
k

αkJ
k
co2(t− Lk) (14)

where Jk
co2 denotes the CO2 uptake of the kth cell, Jall

co2 denotes the whole CO2 uptake of
a CAM plant, k denotes a cell number, and αk and Lk denote the volume and the transfer
delay of the kth cell. Knowing the delay times of the signals, Lk’s, can often help to
understand the physiology of a plant, e.g., the delay time can indicate a transport delay
of a starch via a vascular bundle. Further, the model is useful to control the biological
rhythm of the plant. We define an identification problem of the delay sequence of the
CO2 uptake as follows:

Estimate the parameters Lk’s and αk’s so as to minimize the objective function
f(t):

f(t) =
(
Jall
co2(t)− Ĵall

co2(t)
)2

(15)

where Jall
co2(t) denotes measurement signal by CO2 analyzer and Ĵall

co2(t) is cal-
culated using the equation:

Ĵall
co2(t) =

∑
k

α̂kJ
k
co2

(
t− L̂k

)
(16)

The plant cell has many different parts. In the simulation, we consider the representative
cells for two parts such as a blade, and petiole. The parameters are α1 = 1, α2 = 0.8,
L1 = 0, L2 = 1. It is supposed that α1, L1 are known, we estimate α2, L2 so as to
minimize the objective function f(t). The decision variable is selected as

d =
[
α̂2 L̂2

]
(17)

The switching optimizer is applied to finding a minimum of the objective function (15)
where k = 2. The parameters and the initial values are selected as a1 = a2 = 1500,

c1 = c2 = 2500, α̂2(0) = 0.7, ˙̂α2(0) = 15, L̂2(0) = 0.6,
˙̂
L2(0) = 15. The switching of

the optimizer is achieved by using the rectangular pulse function with a period of 0.2,
an amplitude of 1, and a duty ratio of 50%. The period of the pulse function must be
adjusted manually according to the situation of convergence of an objective function. The
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Figure 4. Time evolution of the proposed real-time optimizer where all
axes are dimensionless: (top) objective function P (t), (middle) decision

variables α̂2 (dotted red line) and L̂2 (solid blue line), and (bottom) Jall
co2

(solid blue line) and Ĵall
co2(t) (dotted red line)

amplitude and the duty ration are fixed values. Figure 4 shows the objective function,
the decision variables, and the estimate of the whole CO2 uptake. As the objective

function becomes small, the estimation error of the whole CO2 uptake,
∣∣∣Jall

co2(t)− Ĵall
co2(t)

∣∣∣
is also small as shown in Figure 4. The estimates α̂2 and L̂2 stay near their true values
after enough time has passed. The identification errors of the parameters, |α2 − α̂2| and∣∣∣L2 − L̂2

∣∣∣, become small.
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4. Conclusion. In this paper, we presented a model of the sum of the CO2 uptake of
CAM plants as a linear combination of delayed oscillation waves of cells. Further, we
proposed a continuous-time momentum gradient descent for searching for a minimum of
the objective function and apply this optimization method to the signal separation prob-
lem. The proposed switching optimizer is effective for multivariable real-time optimization
problems. The estimated parameters tell us the cell-cell interactions. We just assembled
the experimental equipment by using an incubator and try to collect CO2 uptake data.
The next problem we would consider is to apply the proposed method to experimental
data.
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