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Abstract. Several fuzzy time-series models have been proposed based on the Box-Jenkins
approach. An autocorrelated fuzzy time-series model has been proposed in this paper, based
on autoregressive (AR) modeling, to illustrate the possibilities of time-series systems while
focusing on the ease of model use. Time-series models are multivariate analysis models
and as such require statistical knowledge. Therefore, the proposed model was divided into
classes, and the prediction was performed using the class values. The values predicted by
the proposed method were more accurate than the values predicted by the AR model. In
other words, the predicted values of the proposed method came closer to the check data
than the AR method. This study applies the proposed method to the Japanese consumer
price index to demonstrate its functionality.
Keywords: Autoregressive model, Class interval, Class values, Consumer price index

1. Introduction. Various fuzzy time series models [2,6,7] have been proposed to address
the ambiguity of time-series systems. Fuzzy time series models are primarily based on the
rule-based model [3,5] or the Box-Jenkins model [8,10,11]. The former improves prediction
accuracy when combined with clustering [1,4,9,12,13]. There are few rule-based models
that can determine interval prediction values, compared to non-interval time-series mod-
els. The model proposed by Zhang and Zhu [13] uses the k-means method to adjust the
clusters into intervals, to predict the interval output. The autocorrelated fuzzy time-series
model (AFTSM) [11] is one of the latter Box-Jenkins models used to determine an in-
terval output. The AFTSM is an AR model based on interval time series, such that the
center value of the predicted value is the same as that of the AR model. The AFTSM
thus determines the interval output from the input.

The prediction accuracy in regression analysis may be improved by creating a frequency
distribution table and by increasing the class width. The ease of handling the model
and prediction accuracy of the AFTSM are improved by adopting a time series of class
values. In this paper, an autocorrelated fuzzy time-series model based on classified series
(AFTSMC) is proposed. As a numerical example, the Japanese consumer price index
(CPI) has been analyzed using the proposed model. Because the proposed model is a
fuzzy AR model, it classifies the time series into classes. Thus, it is easier to handle than
rule-based models with combined clustering. In the numerical example, the prediction
accuracy of the proposed model is affirmed.

The remainder of this paper is organized as follows. The AFTSM, which is the original
AFTSMC, is briefly explained in Section 2. Section 3 describes the proposed AFTSMC
method. In Section 4, AFTSMC is used to analyze the Japanese consumer price index.
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We then confirm the characteristics of the proposed model. Finally, Section 5 summarizes
the study.

2. Autocorrelated Fuzzy Time Series Model. The AFTSM proposed by the author
[11] is a fuzzy AR model with a fuzzy coefficient number. In addition, the AFTSM adopts
interval-type time-series data.
The center of the values predicted by the AFTSM coincides with that of the AR model.

Therefore, this study uses a triangular fuzzy number as an interval-type time series. Fuzzy
time-series data xt =

[
xL
t , x

C
t , x

U
t

]
at time t are described by the center xC

t and the upper

and lower limits xU
t and xL

t , respectively. Hereafter, the center, lower, and upper limits
of triangular fuzzy numbers are indicated by C, L, and U , respectively.
If the time series yt are real numbers, they are converted to fuzzy numbers, as follows:

xU
t = max{yt−1, yt, yt+1},

xC
t = yt,

xL
t = min{yt−1, yt, yt+1}.

(1)

Here, although the time series yt are fuzzified using the three times t− 1, t, and t+1, the
conditions dictate the fuzzification.
AFTSM using a fuzzy autoregressive coefficient aj (j = 1, 2, . . . , p) can be formulated

as
xt = a1xt−1 + a2xt−2 + · · ·+ apxt−p,

aj =
[
aLj , a

C
j , a

U
j

]
, j = 1, 2, . . . , p.

}
(2)

The AFTSM is a fuzzified AR model, and its coefficients are determined by autocorre-
lation. The autocovariance vk, and autocorrelation coefficient rk of lag k were obtained
using the fuzzy time series xt. Therefore, fuzzy autocovariance vk, and fuzzy autocorre-
lation rk are also interval-type fuzzy numbers, vk =

[
vLk , v

C
k , v

U
k

]
and rk =

[
rLk , r

C
k , r

U
k

]
,

respectively. The fuzzy autocovariance vk, and fuzzy autocorrelation coefficient rk of lag
k are given by

vk = Cov[xt,xt−k], rk =
vk

v0

, r0 := [1, 1, 1]. (3)

The fuzzy autocorrelation coefficient of lag 0 is defined as r0 = [1, 1, 1] = 1.
Generally, an autoregressive coefficient is obtained using the Yule-Walker equation;

however, both the autocorrelation and autoregressive coefficients of AFTSM are fuzzy
numbers. Therefore, the Yule-Walker equation does not apply, but it can be extended as
follows: 

r0 r1 · · · rp−1

r1 r0 · · · rp−2

...
...

. . .
...

rp−1 rp−2 · · · r0




a1

a2

...

ap

 ⊇


r1

r2
...

rp

 , (4)

where r and a are fuzzy numbers. Therefore, the fuzzy Yule-Walker equation, as indicated
in Equation (4), is not an equation. In addition, a fuzzy autocorrelation coefficient has a
constraint r ⊆ [−1, 1]. Therefore, a fuzzy autoregressive coefficient is obtained using the
following procedure.
Step 1: Adjustment of fuzzy autocorrelation coefficient
Fuzzy autocorrelation coefficients are adjusted by α-cut, thereby becoming r ⊆ [−1, 1].
Step 2: Calculation of fuzzy autoregressive coefficient
The widths of the values predicted by the interval model are vague. Equation (4), using

the fuzzy autoregressive coefficients a, minimizes the sum of vagueness,
∑p

j=1

(
ρUj − ρLj

)
,

of AFTSM, which is rewritten in linear programming as follows:
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min
a

p∑
j=1

(
ρUj − ρLj

)
s.t. Ra ⊇ r, ρCj = rCj , j = 1, 2, . . . , p.

 (5)

It is evident from Equation (5) that the center of the predicted value of the AFTSM
coincides with the AR model.

In the above procedure, the coefficients of the AR model interval output (AFTSM)
are obtained by fuzzification. However, the values predicted by the AFTSM can vary
significantly compared with the measured values [11]. In addition, when the equation is
verified without using the original series, its forecasting accuracy occasionally decreases.
This may be due to inadequate preprocessing in model building or in determining the
characteristics of the model. In addition, because AFTSM uses fuzzy numbers, its fuzzy
autoregressive coefficients may be affected by the vagueness of the adopted time series
and by the fuzzy operations. Therefore, the predicted widths are likely to be large.
To address these limitations, this study proposes the utilization of classes. When a time
series is divided into classes, it is interval-valued, and there is no need for fuzzy operations.
The prediction accuracy can also be improved by appropriately setting the class width.
Accordingly, AFTSM adopts an interval-type time series. To improve prediction accuracy
and ease of use, an AFTSM with a class time series (AFTSMC) is proposed.

3. Class Time Series. The classes used in this study are presented in Table 1. Initially,
set a class value ei, and a class width 2w, such that time series xt can be properly classified
into class Ii. A class value ei is assigned to a central value zCt of a time series zt =

(
zCt , w

)
,

classified as class Ii. The time series adopted in AFTSMC are real-valued. Therefore, the
autoregressive coefficients of the AFTSMC have real values. However, because the time
series to be predicted, zt, is a fuzzy number, an interval-type fuzzy number and the width
w of an interval are applied to the predicted values.

Table 1. Class

i Interval Class value
...

...
...

i− 1 (ei−1 − w, ei−1 + w] ei−1

i (ei − w, ei + w] ei
i+ 1 (ei+1 − w, ei+1 + w] ei+1

...
...

...

A fuzzy time series model AFTSMC, which adopts class time series, can be described
as follows:

zCt = b1z
C
t−1 + b2z

C
t−2 + · · ·+ bpz

C
t−p. (6)

As mentioned above, the time series zt, and the autoregressive coefficient bi of Equation
(6) are real values. 

ρ0 ρ1 · · · ρp−1

ρ1 ρ0 · · · ρp−2

...
...

. . .
...

ρp−1 ρp−2 · · · ρ0




b1

b2
...

bp

 =


ρ1

ρ2
...

ρp

 . (7)

ρk is the autocorrelation coefficient of lag k in time series zt:

ρk =
Cov

[
zCt , z

C
t−k

]
Cov [zCt , z

C
t ]

. (8)
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Here, the autocorrelation coefficient at lag 0 is clearly ρ0 = 1, as in the AR model.
The procedure to build AFTSMC is as follows.
Step 1: Transformation of an original series to a class time series
A time series yt is transformed into a stationary time series, and the classes indicated in

Table 1 are defined. The stationary time series is then divided into classes and transformed
into a class time series zt.
Step 2: Obtaining autoregressive coefficients
The autocorrelation coefficient ρk is set to the center zCt of the class time series. Using

the autocorrelation coefficient ρk, the autoregressive coefficient bi of AFTSMC is deter-
mined using the Yule-Walker equation, shown as Equation (7).
Step 3: Prediction
Classify the predictions of zCt obtained from the autoregressive Equation (6) into classes.

The predicted value of an original series is determined by transforming the class into an
original series.
The three steps outlined above are adopted to predict class time series by AFTSMC.

4. Analysis of the Japanese National Consumer Price Index. To check the char-
acteristics of the AFTSMC, the Consumer Price Index for Japan, based on the year 2010,
was used. There were 525 monthly data sets from January 1970 to September 2013. In
this study, the period from January 1970 to October 2012 was used for model building,
and the ensuing 12-month period from November 2012 to September 2013 was used to
verify the prediction accuracy.
When the original series yt represents the consumer price index, the value range of the

stationary time series ∆∆6yt is [−3.4, 4.1], and the width of the class is set to 0.2. The
autocorrelation coefficients of the difference series ∆∆6yt and center zCt of the class time
series are presented in Table 2 and Figure 1.
As illustrated in Table 2, the difference in the autocorrelation coefficients of the differ-

ence series ∆∆6yt, and its class value zCt is negligible. In addition, as illustrated in Figure
1, ∆∆6yt−1 and ∆∆6yt−6 are highly correlated. Hence, the second-order AFTSMC can
be expressed as

zCt = 1.373zCt−1 − 1.388zCt−6. (9)

Then the AR of the difference series ∆∆6yt is

xt = 1.386xt−1 − 1.405xt−6. (10)

Table 2. Autocorrelation coefficients of ∆∆6yt and zCt

Lag ∆∆6yt zCt Lag ∆∆6yt zCt
1 0.576 0.575 13 0.088 0.086

2 0.172 0.171 14 −0.108 −0.102

3 −0.018 −0.013 15 −0.062 −0.062

4 −0.074 −0.070 16 −0.005 −0.006

5 −0.331 −0.320 17 −0.157 −0.157

6 −0.606 −0.598 18 −0.320 −0.320

7 −0.273 −0.272 19 −0.138 −0.144

8 0.034 0.027 20 0.024 0.017

9 0.119 0.114 21 −0.045 −0.044

10 0.054 0.052 22 −0.099 −0.095

11 0.183 0.174 23 0.075 0.080

12 0.313 0.307 24 0.276 0.275
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(a) Difference series

(b) Class value

Figure 1. Correlograms

The predicted values and original series of Equations (9) and (10) are illustrated in Figure
2. The model was constructed using the time series of the vertical line in Figure 2 until
September 2012. The model was then validated. Since October 2012, forecasts have
been made by adopting predicted values. In the model building period, it is evident
that both AR and AFTSMC have large forecast errors. In the validation of prediction
accuracies, the original series displayed stable values; however, both predictions displayed
large fluctuations. In addition, it can be observed that at the end of the validation period,
the predictions of AR are more disordered than those of AFTSMC.

Because increasing the width of the class may improve the prediction accuracy, the
change in the prediction is checked by varying the width of the class w by approximately
1.0. The resulting autoregressive coefficients are listed in Table 3, and the prediction
accuracies are listed in Table 4. The correlation coefficients of the original series and the
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Figure 2. Original series and predicted values of AFTSMC (w = 0.2) and AR

Table 3. Autoregression coefficients and widths of class intervals

Lag w = 0.2 w = 0.4 w = 0.8 w = 1.0 AR
1 1.373 1.292 1.066 0.948 1.386
6 −1.388 −1.318 −1.101 −0.970 −1.405

Table 4. Prediction accuracies and widths of class intervals

w = 0.2 w = 0.4 w = 0.8 w = 1.0
Correlation coefficient between original series
and the predicted values by AFTSMC

0.9975 0.9976 0.9986 0.9986

Correlation coefficient between original series
and the predicted values by AR

0.9973

Residual sum of squares between original se-
ries and the predicted values by AFTSMC

932.36 894.54 534.70 500.10

Residual sum of squares between original se-
ries and the predicted values by AR

997.1204

Sum of squares of distances between original
series outside the predicted interval, and the
nearest boarder of the interval

497.8 411.4 173.0 114.9

predicted values are similar for AR and AFTSMC. However, when the class width value is
increased from w = 0.2 to w = 1.0, the correlation coefficient approaches 1. The residual
sum of squares calculated from the values predicted by the AFTSMC and the original
series is smaller than that of AR. As the width of the class value increases, the residual
sum of squares of the AFTSMC decreases. The values are largest at w = 0.2, 932.36, and
smallest at w = 1.0, 500.10. In other words, the prediction accuracy can be improved by
increasing the width of the class.
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Figure 3. Original series and predicted values of AFTSMC (w = 1.0) and AR

Figure 4. Widths of class and prediction accuracies

The sum of squares of the distances between the original series outside the predicted
interval and the nearest border of the interval also decreases as w increases. The distances
are largest at w = 0.2, 497.8, and smallest at w = 1.0, 114.9. However, the distances to
these intervals cannot be directly compared in terms of prediction accuracy because the
intervals become larger as w increases.

The original series and AFTSMC predictions for a class width of w = 1.0 are illustrated
in Figure 3. In Figure 3, the width of the class does not just increase; the center of the
predicted values seems to be closer to the original series. Furthermore, in the verification
of AFTSMC, the predicted values are closer to the original series, and the irregularity of
the fluctuations decreases.

The gray dashed line in Figure 4 indicates the AR prediction. The wide red dashed
line indicates the center of AFRSMC, and the solid light blue line indicates the boundary
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of the section. As illustrated in Figure 4, the prediction accuracy of the proposed model
improves as the width of the class increases. In summary, it was confirmed that the use
of the rank time series improves the forecasting accuracy of the proposed model.

5. Conclusion. In this study, a fuzzy time-series model with class values was proposed.
The proposed model can predict with high accuracy, when an appropriate class range is
set.
Using the consumer price index of Japan as a numerical example, it was confirmed that

the proposed model was able to forecast with high accuracy. In addition, it was confirmed
that the proposed model was easy to handle.
In a previous study [11], the predicted values behaved unnaturally, and the width of

the interval output also increased. In this study, by classifying the time series into classes,
the prediction accuracy was improved. However, the width of the interval output does
not fully express the vagueness of the time-series system. In future work, the proposed
model will be further developed to describe the ambiguity of the time-series system.
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