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Abstract. This paper proposes a 3D-convolutional neural network (3D-CNN) fault di-
agnosis algorithm based on the Keras framework for the diagnosis of rotor bearing output
end faults. Feature extraction and diagnostic analysis can be carried out based on 3D da-
ta. The model takes the acceleration data collected by the 3D acceleration sensor as the
input of the diagnosis model, completes the feature extraction by the 3D-CNN algorithm,
then diagnoses the fault types and classifies the output by the convolutional neural net-
work (CNN). The fault types are classified by CNN Softmax classifier. The experimental
results show that the diagnostic accuracy using this fault diagnosis model achieves 99%.
Unlike the traditional CNN algorithm, this method can put three data sets directly into
the CNN as the input layer for operation, which eases the feature extraction of data sets.
Compared with the traditional 1D and 2D CNN-based feature extraction fault diagnosis
algorithms, the Keras-based 3D-CNN diagnostic model has higher accuracy for analyzing
and diagnosing.
Keywords: Machine learning, Deep learning, 3D-convolutional neural network, Fault
diagnosis, Data processing

1. Introduction. Rolling bearings, as an integral part of today’s industrial production
[1], are widely used in the connecting structures of industrial machine [2]. They are im-
portant parts in lots of mechanical equipment, and act to friction reduction, load transfer,
and lubrication [3]. According to relevant statistics, bearing failure occupies a large pro-
portion of the many causes of failure in mechanical equipment [4-6]. The traditional
detection methods can only be found when bearing fault causes equipment fault, and
the fault caused by weak signal detection still needs machine learning to be involved
[7]. Therefore, bearing fault diagnosis and analysis based on machine learning has great
significance [8].

Nowadays, the existing methods for fault diagnosis in the field of machine learning
are initially for data collected from a single sensor to diagnose the related faults [9], but
these methods have bad robust performance and the diagnostic accuracy requires high
data requirements [10,11]. Therefore, to overcome this drawback, many fault diagnosis
algorithms based on machine learning aim at detecting multiple sensors simultaneously.
The fault data is collected by different sensors, and then the collected data is diagnosed by
feature fusion or other experimental methods [12]. However, this method leads to strong
coupling of the data collected by different sensors, which in turn makes it difficult to
determine the type of bearing faults accurately and efficiently [6].
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Most of the current models for bearing fault analysis are still one-dimensional or two-
dimensional convolutional neural networks (CNN). One-dimensional CNN is a machine
learning fault diagnosis model for data collected by a single sensor. And two-dimensional
CNN requires two-dimensional data as input for fault diagnosis. Two-dimensional data
is obtained by adding a time dimension or by lifting one-dimensional data [13-15]. The
sensors of most mechanical devices are not only single-dimensional signal data, but there
is not much research on machine learning diagnosis model for multidimensional fault
analysis model.
In summary, this paper uses 3D-CNN to establish a multidimensional machine learning

fault analysis method. Firstly, the collected three data signals are pre-processed, and
the original data are firstly processed by one-hot labeling algorithm. Secondly, 3D-CNN
fault diagnosis analysis algorithm based on Keras framework is established, including
convolutional layer, pooling layer, fully-connected layer, and output layer. Finally, the
fault diagnosis model based on Kreas outputs the prediction accuracy and draws the loss
curve according to the degree of data set deviating from its label. The 3D-CNN algorithm
based on Keras has the following advantages. 1) It can directly put the preprocessed 3D
data into the established model without dimension reduction of multidimensional data. 2)
There is no need to extract low-dimensional independent variables from multidimensional
coupling data. 3) Up to now, it is the most convenient to build 3D-CNN algorithm model
under Keras framework.

2. Problem Statement and Preliminaries.

2.1. Keras framework. Keras is an open source artificial neural network library written
in Python that can be used as a high-level application programming interface (API) for
Tensorflow, computational network toolkit (CNTK), and Theano to design, evaluate,
apply, and visualize deep learning models. To use Keras, you only need to import the
relevant model interfaces and call the encapsulated functions. Compared to Tensorflow,
it is easier to call central processing unit (CPU) or graphics processing unit (GPU) for
model computation, and has more convenient function calling capabilities.

2.2. 3D-convolutional neural network. CNN is a deep learning network framework
with a wide range of applications in the field of machine learning. 3D convolution is
performed by stacking multiple dimensions of data to form a cube and then applying 3D
convolution kernels in the cube to performing the relevant operations.
The 3D-CNN is not very different from the traditional CNN in terms of architecture. It

has the same structure of input layer, convolutional layer, pooling layer, fully connected
layer and output layer, etc. The schematic diagram of the network structure is shown
in Figure 1. However, the dimension of all layers is three-dimensional, the input layer
is three-dimensional data, and the corresponding convolutional kernel is also a three-
dimensional convolutional kernel.
The theoretical basis of 3D-CNN is not much different from that of CNN, and both

of them perform convolutional operation on the input data and output the feature map
by the convolutional kernel in the CNN. The mathematical expressions are as follows.
Formally, the value of unit at position (x, y, z) in the jth feature map in the ith layer,
denoted as vxyzij , is given by

v
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where tanh(·) is the hyperbolic tangent function, bij is the bias of this feature map, m
refers to the index of the set of feature maps in the (i−1)th layer connected to the current
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Figure 1. Schematic diagram of 3D-CNN

feature map, wpqr
ijm is the value at the location (p, q, r) connected to the kth core, and Pi,

Qi, and Ri are the height, width, and length of the core, respectively.
Similar to the traditional CNN, the structural adjustments and the parameter settings

of the machine learning layers can be chosen according to the model and data set.

3. Keras-Based 3D-CNN Fault Diagnosis Model. The implementation of 3D-CNN
in Keras calls the keras.layers.convolutional.Conv3D function. Firstly, import the Con-
v3D, Dense, Maxpooling3D, Flatten, Dropout functions from keras.layers, and then the
preprocessed bearing data is imported. Set the training parameters, such as the batch
size, the training generations, the number of fault types or classifications, and the number
of samples. The data are classified into a training set, a test set and a validation set by
calling the functions in the preprocessing code with a preset scale, and then CNN func-
tions such as Conv3D are called to build the 3D-CNN bearing fault detection model and
model output training results.

The relevant parameters used in the Conv3D function are set and defined as follows.

Definition 3.1. filters: The number of convolution kernels, i.e., the dimensionality of

the output.

Definition 3.2. kernel size: A single integer or a list of three integers as the length,

width, and height of the convolution kernel. If it is a single integer, it means that the

convolution kernel is of the same length in all spatial dimensions.

Definition 3.3. strides: A single integer or a list of three integers as the step size of the

convolution. If it is a single integer, it means that the step length is the same in all spatial

dimensions.

Definition 3.4. padding: Padding strategy, either valid or same-valid means that only

valid convolution is performed, i.e., the boundary data is not processed. same-same means

that the convolution result at the boundary is retained, which usually results in the output

shape being the same as the input shape.

Definition 3.5. kernel regularizer: Regularizer term imposed on the weights, for regular-

izer object.
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4. Experiments.

4.1. Data acquisition. The bearing failure data in this paper are collected from the
HZXT-008 rotor bearing comprehensive failure simulation experiment platform, as shown
in Figure 2. The experimental platform has the characteristics of simple structure, easy
disassembly and assembly, and stable performance. It can be flexibly configured with
sensors for vibration, speed, displacement, acceleration and other mechanical parameters
measurement in order to measure the relevant data when the bearing is operating. It is
equipped with data acquisition instruments and data analysis software to form a multi-
purpose and comprehensive experimental system platform, providing a good experimental
analysis environment for researchers engaged in the study of rotor dynamics and related
courses.

Figure 2. HZXT-008 rotor bearing fault simulation bench

The experimental data collected in this paper are mainly the experimental data mea-
sured by the three-axis acceleration sensor installed on the experimental platform, and
the raw data sets of three different bearing faults were collected. The bearing faults are
pitting outer ring faults, pitting inner ring faults, and pitting rolling faults. The relevant
data were collected through the data acquisition equipped with the bearing experimental
platform, and the data acquisition software was set up as shown in Figure 3. The bearing
speed is 1300 rpm, the sampling frequency is 20 KHz, and the sample time for each fault
is 10 min.

Figure 3. Fault simulation software settings

The bearing fault type labels, bearing fault locations and bearing fault types are shown
in Table 1; the sensor types, sensor mounting positions and sensor detection directions
are shown in Table 2.
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Table 1. Bearing failure types

Fault labels Fault locations Fault types

EA Rolling body Pitting
EB Outer ring Pitting
EC Inner circle Pitting

Table 2. Sensor types and mounting locations

Sensors Sensor mounting position Detection direction

Acceleration sensor Faulty bearing connection X
Acceleration sensor Faulty bearing connection Y
Acceleration sensor Faulty bearing connection Z

4.2. Data processing.

4.2.1. Raw data set pre-processing. The bearing failure data collection system is men-
tioned earlier, and the experimental data are collected through the experimental data
collection software to support the experiment. The data collected by the experimental
data collection software is saved as multiple csv files, and the data collected for different
faults should be merged and sorted for pre-processing operations firstly. Figure 4 shows
the result of the experimental original file merging and sorting operations. As shown in
the figure, the experimental data of three different fault types are merged and organized
into three different files, and each file has three dimensions of the experimental data.

Figure 4. Pre-processing results of the original data of the fault

4.2.2. Fault dataset pre-processing. For the raw bearing failure data obtained by the above
processes, the pre-processing functions are defined, such as partitioning the data set into
training set, validation set, test set and labeling the different data sets by one-hot algo-
rithm according to a certain proportion of functional functions. The defined functions are
verified by importing the bearing failure datasets.

The partial visualization of the collected dataset is shown in Figure 5. Figure 5(a)
represents the three-dimensional dataset of the pitting rolling body failure part, Figure
5(b) represents the three-dimensional dataset of the pitting inner ring failure part, and
Figure 5(c) represents the three-dimensional dataset of the pitting outer ring failure part
with different colors indicating different dimensional data.

4.3. Experimental procedure.

4.3.1. Experimental steps. Firstly, set the training parameters: the batch size is 128, the
number of iterations is 15, the classification target is 3, each class of fault samples is
2000, each sample dimension is (1024, 3), and the proportion of training set, test set and
verification set is (0.7, 0.2, 0.1). Then import the relevant functions in the preprocessing
file, divide the failure data set according to the ratio, import the relevant machine learning
functions of Keras framework, introduce two 3D convolutional layers, a fully connected
layer, an output layer and set the parameters of function and layer. After that, we
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(a) Pitting rolling body (b) Pitting inner circle partial (c) Pitting outer ring part

Figure 5. Partial data visualization chart

Figure 6. 3D-CNN algorithm model flow chart

compile the model, train it, and output the experimental results. The flow chart of 3D-
CNN algorithm model is shown in Figure 6 and the experimental procedure is shown in
Figure 7.

4.3.2. Experimental results. The experimental results are calculated by importing the
relevant evaluation functions under the Keras framework. The experimental results are
shown in Table 3.
It is proved that 3D-CNN has excellent prediction and classification effect for 3D data,

and the accuracy rate on the test set reaches 99.16%. Loss curve is a measure of machine
learning model, used to measure the prediction of the model deviate from its label. The
loss curve of the model is shown in Figure 8.
Experimental results of 3D-CNN method compared with that of traditional CNNs are

shown in Table 4. The traditional CNNs use the same dataset, but the data input is one
dimension of the three-dimensional fault dataset or two dimension of the three-dimensional
fault dataset, so there are three different prediction accuracy.
3D-CNN method has the highest prediction accuracy than CNNs with one-dimensional

data input and two-dimensional data input. The prediction accuracy of traditional CNN
is 76.67%, 84.5%, 83.16%, the prediction accuracy of 2D-CNN is 73.16%, 91%, 91.17%
and the prediction accuracy of 3D-CNN is 99.16%.
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Figure 7. Model training process diagram

Table 3. Model training result

Validation with test sets Validation results

Loss rate 6.76%
Accuracy 99.16%

Figure 8. Model training loss graph
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Table 4. Prediction accuracy of different machine learning models

Machine learning models Model prediction accuracy

CNN
X Y Z

76.67% 84.5% 83.16%

2D-CNN
X&Y Y&Z X&Z
73.16% 91% 91.17%

3D-CNN 99.16%

5. Conclusion. In this paper, a 3D-CNN fault diagnosis algorithm based on Keras
framework is proposed to analyze the output faults of rotor bearings. The experimen-
tal results show that 3D-CNN method has higher prediction accuracy than traditional
CNN on multidimensional data sets. Multidimensional data sets can be operated and
trained simultaneously. There is no need to predict and analyze single-dimensional data
like traditional CNN. 3D-CNN method is a convenient and efficient algorithm on multi-
dimensional data sets. 3D-CNN method is an extension of CNN algorithm. It is proved
that 3D-CNN has excellent prediction and classification effect for 3D data.
Future plans include the implementation of more tests, covering more types of bearing

tests under various working conditions and fault conditions. These tests will be used
to further understand the limitations and boundaries of the proposed method in fault
diagnosis. In addition, the computational efficiency of this method needs to be improved
in the training process.
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