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Abstract. A hybrid genetic algorithm (HGA) is proposed to minimize total stretch in
a no-wait flow shop scheduling problem. The stretch of a job is the flow time of the job
divided by its processing time. HGA combines local search with genetic algorithm (GA)
to reduce the possibility of premature convergence. The performance of HGA is compared
with that of GA and the experimental results show that HGA works well for this type of
problem.
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1. Introduction. In a no-wait flow shop scheduling problem, a job has to be continuously
processed from start to completion of the job without any interruption and waiting [1].
Various manufacturing environments of no-wait process include steel, plastic, chemical,
pharmaceutical, and food-processing industries [2,3].

Ye et al. [4] proposed an average idle time heuristic for no-wait flow shop to minimize
the makespan. Engin and Güclü [5] developed a new hybrid ant colony algorithm for
n-job m-machine no-wait flow shop scheduling problems to minimize the makespan. Zhao
et al. [6] provided a discrete water wave optimization algorithm for a no-wait flow shop
scheduling problem to the makespan.

Ding et al. [7] considered a no-wait flow shop scheduling problem to minimize the
makespan. They presented an iterated greedy algorithm modified by introducing a Tabu-
based insertion strategy for the problem. Lin and Ying [8] formulated a no-wait flow shop
scheduling problem with makespan minimization as an asymmetric traveling salesman
problem.

Nagano et al. [9] addressed a no-wait flow shop scheduling problem with sequence de-
pendent setup times to minimize the total flow time. They presented a new constructive
heuristic in order to obtain good approximate solutions in a short computing time. Cheng
et al. [10] considered a mixed no-wait flow shop scheduling problem with sequence de-
pendent setup times to minimize the makespan. They presented a mixed integer linear
programming model and proposed a pairwise iterated greedy algorithm.

Ying and Lin [11] investigated no-wait flow shop scheduling problems with sequence
independent and sequence dependent setup times to minimize the makespan. They pro-
posed a two-phase metaheuristic algorithm. In the first phase, an approximate solution
was produced by NEH heuristic and LKH algorithm. In the second phase, the solution
acquired in the first phase was used as an upper bound and an optimal solution was
obtained by using the Gurobi optimizer.
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Allahverdi et al. [12] addressed a no-wait flow shop scheduling problem with separate
setup times to minimize total tardiness with an upper bound on makespan. They estab-
lished a dominance rule and proposed a new simulated annealing algorithm utilizing block
insertion and block exchange operators.
Samarghandi [13] developed a particle swarm optimization for a no-wait flow shop

scheduling problem with due dates to minimize makespan. Gao et al. [14] considered a
two-machine no-wait permutation flow shop scheduling problem with common due date
and controllable job processing times to minimize total earliness, tardiness, common due
date cost and total resource cost. They showed that the problem could be solved in
polynomial time.
Dong et al. [15] introduced a no-wait two-stage flow shop scheduling problem with the

first stage machine having multitask flexibility to minimize the makespan. They presented
a linear time algorithm with an approximation ratio 13/8. Koulamas and Kyparisis [16]
considered a no-wait flow shop scheduling problem with rejection. They presented a
backward O(n3) dynamic programming to minimize the sum of total completion time
and total rejection cost with ordered jobs.
This paper addresses an n-job, m-machine no-wait flow shop scheduling problem in

which the objective is to minimize the total stretch. Stretch (response time or slowdown)
of a job is defined as the ratio of its flow time to its processing time [17,18]. Stretch is
a fairly natural criterion in that jobs of large processing time must be prepared to wait
longer than the ones necessary for less time [19]. The idea of stretch is illustrated by the
two-job, two-machine flow shop shown in Figure 1. The processing times of jobs 1 and 2
are all 3 time units on machine 1. The processing times of jobs 1 and 2 are 2 and 8 time
units on machine 2, respectively. The release times of jobs 1 and 2 are 5 and 2 time units,
respectively. If job 1 is processed before job 2, total flow time and total stretch will be 22
and 2.55 time units, respectively (schedule 1). On the contrary, when job 2 is processed
first, total flow time is reduced to 21 time units, but total stretch is increased to 3 time
units (schedule 2).

(a) Schedule with smaller total stretch (schedule 1)

(b) Schedule with smaller total flow time (schedule 2)

Figure 1. Two schedules for a two-machine flow shop (the numerals rep-
resent jobs)
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For job j, j = 1, . . . , n, let rj be the release time, pij the processing time on machine i,
i = 1, . . . ,m. Let pj = p1j + p2j + · · ·+ pmj. If the completion time of job j on machine i
is ci,j, then the stretch is pj = sj = (cmj − rj)/pj.

For a given sequence σ, the problem can be formulated as follows:

minimize z(σ) =
n∑

j=1

(cmj − rj)

pj

subject to ci,σ(j) − pi,σ(j) = ci−1,σ(j), i = 2, 3, . . . ,m, j = 1, 2, . . . , n (1)

ci,σ(j) − pi,σ(j) ≥ ci,σ(j−1), i = 1, 2, . . . ,m, j = 2, 3, . . . , n (2)

ci,σ(j) − pi,σ(j) ≥ γσ(j), i = 1, 2, . . . ,m, j = 1, 2, . . . , n (3)

where σ = {σ(1), σ(2), . . . , σ(n)} is a job sequence, and σ(j) represents the jth job in the
sequence.

Constraint set (1) insures that once a job is released from a machine, its processing on
the next machine begins immediately. Constraint set (2) indicates that only one job at
most can be processed on each machine at a time. Constraint set (3) states that jobs are
available after their release times.

The problem of minimizing the total stretch with different job release times is NP-hard
even for a single machine [20]. Thus, the problem to be solved seems to require an amount
of time that grows exponentially with the problem size and it becomes quickly impractical
even for current-generation computers. Metaheuristics such as simulated annealing, tabu
search and genetic algorithms are useful for solving difficult problems. They have been
successful to search for global or near-optimal solutions in many application areas [21]. GA
is a stochastic search method designed to search large and complex spaces by exploiting
best solution and exploring the search space. GA may fail for various reasons including
premature convergence regardless of its desirable characteristics [22].

In the next section, a hybrid genetic algorithm is proposed for the no-wait flow shop
scheduling problem to minimize total stretch. HGA incorporates local search into GA
in order to restrain tremendous copies of a super-chromosome and relieve the premature
convergence. In Section 3, the results of computational experiments of HGA and GA are
provided. Summary and future researches are given in Section 4.

2. Hybrid Genetic Algorithm. GA starts by generating an initial population of m
chromosomes, which are abstract representation of solutions. The fitness of each chromo-
some is determined by a fitness function. Selection is done randomly with a probability
depending on the relative fitness of the chromosomes to construct a mating pool of m
chromosomes. A pair of chromosomes from the mating pool is chosen and goes through
recombination (crossover) and mutation to produce two offspring. A new population of
m chromosomes created in this manner constitutes the next generation and this process
is repeated until a stopping criterion is reached [23,24].

HGA randomly generates an initial population of m chromosomes in order to search
unbiased sampling of the space. The chromosomes are encoded by a permutation repre-
sentation. HGA uses the stochastic remainder selection procedure without replacement.
The procedure determines E(l), the expected number of copies of chromosome l. Only
⌊E(l)⌋ copies of chromosome l are assigned to the mating pool. If the number of chro-
mosomes in the mating pool is less than m, Bernoulli trials with success probabilities
Ps(l) = E(l)−⌊E(l)⌋ are performed to chromosome l one by one. When chromosome l is
selected, Ps(l) is reduced to 0. This process continues until m chromosomes are selected.

With a high selection pressure, the copies of a super-chromosome reproduce much
more quickly than the others. The exploration of the search space seems to be limited
to a search randomly centered on the super-chromosome and there will be a great risk
of premature convergence [25]. To prevent this situation, HGA adopts a generalized
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pairwise interchange (GPI) to be applied to worst chromosome to find best neighborhood.
Replacing the worst chromosome by the best neighborhood inhibits increasing the rate of
premature convergences.
HGA adopts PMX, in which two crossover points are picked at random. Genes between

the points are exchanged and alleles of the genes are used to construct the match table.
The genes in the first and last sections are exchanged if they are included in the match
table. For example, suppose that A and B are the chromosomes chosen for crossover such
that A = (6 3 4 5 1 2) and B = (3 2 6 1 4 5), and the two crossover points are 2 and 5.
First, the genes between two crossover points are swapped (4 5 1 of A and 6 1 4 of B).
Second, the genes before the first crossover point and after the second crossover points
are exchanged according to the match table (4 ↔ 6), (5 ↔ 1) and (1 ↔ 4), which results
in (5 ↔ 6). Then, the resulting chromosomes by PMX are A′ = (5 3 6 1 4 2) and B′ =
(3 2 4 5 1 6).
HGA adopts the adjacent swap method as mutation operator, which exchanges a job

with the next job in the job sequence if the job is selected with mutation rate. If the last
job is to be mutated, it is exchanged with the first job in the job sequence. A flow chart
of the HGA is shown in Figure 2.

Figure 2. Flow chart of HGA

3. Computational Experiments. The HGA and GA were coded in Visual FORTRAN
and ran on an Intel Core i7 CPU@3.4 GHz PC. The test problems were generated ran-
domly and provided in Table 1. Processing times and release times of jobs were generated
according to the integer uniform distributions.
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Table 1. Data used to generate test problems (all data are integers)

Data Value
Number of jobs (NJ) 5, 7, 10, 15, 20, 30

Number of machines (NM) 2, 3, 4, 5
Job processing times on machines Uniform(1, 31)

Job release times Uniform(1, 6)

The experiments were done by a preliminary test and a main test. In a preliminary
test, 5 test problems of different sizes were solved to tune several control parameters of
GA and HGA. The best combination of the parameters was a population size of 100, a
total of 100 generations, a crossover rate of 1.0, and a mutation rate of 0.01.

In the main test, 9 test problems were generated for each problem size. HGA achieved
optimal solutions for all small size problems (5 and 7 jobs and 2-5 machines). For medium
size (10 and 15 jobs and 2-5 machines) and large size (20 and 30 jobs and 2-5 machines)
problems, the results of HGA and GA were shown in Table 2. Based on these results, HGA
provided 5.12%, 10.52%, 15.53%, and 25.62% improvements, on the average, respectively
in regard to GA.

Table 2. Results for medium and large size flow shop problems

No. of No. of GA method HGA method %Dev
jobs machines Avg. obj. value (zg) Avg. obj. value (zh) (zg − zh/zg)× 100
10 2 30.53 29.13 4.59

3 26.80 24.27 9.44
4 23.30 22.37 3.99
5 20.81 20.30 2.45

15 2 68.04 56.07 17.59
3 49.20 43.94 10.69
4 41.12 37.36 9.14
5 39.18 37.36 4.65

20 2 104.25 82.40 20.96
3 91.21 75.29 17.45
4 72.01 62.81 12.78
5 59.74 53.21 10.93

30 2 237.91 169.52 28.75
3 176.31 136.72 22.45
4 146.82 115.45 21.37
5 146.82 102.90 29.91

Average 86.90 66.82 14.20

4. Conclusions. This paper has considered the problem of minimizing the total stretch
in the n-job, m-machine no-wait flow shop. Since this problem is intractable, it requires
significant computational effort to solve the problems with large n. HGA is proposed to
prohibit the premature convergence of GA and maintain the search power by adopting
GPI. Extensive computational experiments have been conducted to compare the perfor-
mance of HGA with that of GA. These results show that the average improvement of
HGA over GA is 14.2% for different size problems.

Over the last years, several metaheuristics such as iterated local search, guided local
search and variable neighborhood search have been developed. Hybrid optimization ap-
proaches have become increasingly popular for addressing hard optimization problems.
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Development of most appropriate hybridizing these metaheuristics in a particular situa-
tion will be a future research.
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