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Abstract. This paper investigates the stability problem for a class of nonlinear high-
order system with control function. Two novel adaptive state-feedback controllers are
successfully designed to achieve global stabilization for two cases of the high-order sys-
tem. In contrast with the past investigations on nonlinear high-order system, not only
the unknown control direction but the unknown input power in system are assumed in
this paper. The feature of the controllers lies in the design scheme with upper and lower
bounds and novel Nussbaum type gain method in strategy that can respectively realize the
stability for high-order system in both two cases. The stability and effectiveness of the
system are conducted based on Lyapunov theory. Finally, two illustrative examples are
used to validate effectiveness for the system (1) respectively for two cases.
Keywords: Unknown power, High-order nonlinear system, Control coefficient, Un-
known control direction

1. Introduction. Adaptive control theory is an active area in control theory design,
and some results were reported recently [1,2]. Control law design for high-order systems
has become a hot topic in last two decades and much effort also has been devoted to
the control design for high-order nonlinear systems, see [3-5] and the references therein.
Compared with existing papers that the input powers are one, the higher powers do exist
in practical system and can be regarded as a more general case. The control problems of
uncertain high-order nonlinear systems has become a hot topic, see [6,7-11]. Compared
with the classic nonlinear systems, the high-order one owns more nonlinearities due to the
presence of higher powers that make it difficult to design a controller, especially for the
stabilization problem, see [5,6,8]. And many significant progresses have been achieved by
adding a power integrator, see [5,6]. In [6], by introducing sign function and necessarily
modifying the method of adding a power integrator, an adaptive controller design method
with the aid of integrator was proposed, which can not only compensate the serious system
uncertainties, but overcome the major obstruction from unknown powers. However, when
the powers remain unknown, the technique by adding a power integrator is no longer
capable of designing a controller. And for recent works, significant results for high-order
system with unknown powers have been proposed [7]. In [10], the developed controller is
independent of the powers and can be capable of ensuring global stability for high-order
system.

However, the unknowns including unknown control direction and unknown powers that
are caused by model errors, disturbances and other unknown issues challenge the control
design of nonlinear system largely. These aforementioned investigations cannot meet the
existence of the unknowns we have mentioned in high-order nonlinear system. However,
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most of the existing results only focused on known control direction in high-order system,
see [14,15]. And we have noticed that unknown control direction problem has not been
fully studied in high-order system. So, it is worthy of intensively studying in the control
theory. With the introduction of powerful Nussbaum-gain technique tool, since the 1980s,
abundant achievements on unknown direction control coefficients have been obtained, see
[13,14]. Then, when the input powers are known odd constants, stabilization or tracking
problem system for high-order system with unknown control direction has also been solved
by employing the Nussbaum gain based regulation design technique, see [15,16], etc.
According to the adaptive control theory, the existing results of a class of high-order

nonlinear system could only be as follows: either the control direction in the systems
remains known with unknown power [11], or the systems remain unknown control direction
with known odd input power [14-20]. All supposed the sign of the control direction or
the input power to be known. Then, a natural problem here is that how to achieve the
desired control objective under the situation that both two assumptions do not exist. Is
it possible to further relax both of these two assumptions in high-order nonlinear system?
So, these reports cannot straightforwardly extend to solve this problem. That gives the
birth to this paper, which motivates us to handle the problem for high-order system with
unknown odd power and unknown control direction.
Inspired by the above observation, the problem of control design is thoroughly inves-

tigated for high-order system with unknowns including unknown control direction and
unknown odd power, which can effectively help to design a controller to realize the stabi-
lization for system. Contributions of this paper can be considered as the following.
1) In contrast with the results, the unknown control direction is concerned for the first

time in the literature for a class of high-order nonlinear system with unknown odd power.
2) Compared with the existing literature for high-order system, which applied Nuss-

baum technic solving the problem of unknown control direction and known input power
see [11], this paper assumes that the input power is unknown odd constant.
The rest of the paper is organized as follows. In Section 2, the problem formulation is

introduced. In Section 3 and Section 4, design procedure of the control law and adaptive
rate are proposed respectively for two cases and stability analysis is demonstrated. In
Section 5, some simulation results are given to show the effectiveness of the control design
that is proposed in this paper. In Section 6, we draw the conclusion.

2. Problem Statement. Consider the following high-order nonlinear system
{

ẋ = g(x)up + d(x)

y = x
(1)

where x ∈ R, u ∈ R, y ∈ R are respectively the system state, input and output; d(x) is
called bounded disturbance of the system, which is unknown locally Lipschitz continuous
functions. p ∈ Q≥1

odd is called the power of the system. g(x) denotes the control function.
The control objective is to seek a smooth state feedback control law so that it can

stabilize the system state to the origin, while ensuring global stability of the resulting
closed-loop system.

3. Adaptive Stabilization Controller Design for System with Known Direction.

This section is devoted to designing a state feedback controller for the system with known
control direction and unknown power. For this seek, the following lemma and assumptions
are imposed for system (1).

Lemma 3.1. [12] If p ∈ Q≥1
odd and for ∀xi ∈ R, i = 1, . . . , m, the following inequality

holds that
n
∑

i=1

|xi|
pi ≤

(

n
∑

i=1

|xi|

)pi

(2)
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Lemma 3.2. [12] If p ∈ Q≥1
odd, and satisfies 0 < p ≤ p ≤ p̄, then for any x ∈ R, the

following inequality holds that
|x|p ≤ |x|p + |x|p̄ (3)

Assumption 3.1. Unknown power p is bounded, which satisfied p̄ ≥ p ≥ p ≥ 1, where p
and p̄ are known constants.

Assumption 3.2. There exists an unknown constant θ, for ∀x ∈ R, there holds that

|d(x)| ≤ θh(x)|x|p (4)

where h(x) is known positive smooth function.

Assumption 3.3. There exist known constants g > 0 ∈ R and ḡ > 0 ∈ R, such that

g ≤ g(x) ≤ ḡ (5)

where g and ḡ are respectively the lower and upper bounds of g(x).

3.1. Design of the controller and stability analysis. Under Assumption 3.1, we
have

1 + p ≤ 1 + p̄ ≤ 1 + p̄p (6)

Under Lemma 3.1 and (6), one has that

g(x)

(

1

g
+

1

g
1
p̄

)p

≥ g(x)1−p + g(x)1−
p

p̄ ≥ 1 (7)

From (6), it can be obtained that
(

x+ xp
)p
x =

(

|x|p + |x|pp
)

|x| ≥ |x|1+p̄ (8)

Similar to the analysis of (8), we have
(

(

θ̂h(x)
)

1
p̄

+
(

θ̂h(x)
)

1
p

)p

≥ θ̂h(x) (9)

Then, from the analysis (6)-(9) and Assumption 3.3, we define the control u as follows:

u = −

(

1

g
+

1

g
1
p

)

(∆ + 1)
(

x+ xp̄
)

∆ =
(

θ̂h(x)
)

1
p̄

+
(

θ̂h(x)
)

1
p

(10)

Define

V =
1

2
x2 +

1

2
θ̃2 (11)

where θ̃ = θ − θ̂, θ̃ denotes the error of estimate.
The time derivative of along the trajectories of the system (1) is

V̇ = xẋ−
˙̂
θθ̃ (12)

Considering system (1) and (12), and under Assumption 3.2, we have that

V̇ ≤ g(x)upx+ θh(x)|x|p̄x−
˙̂
θθ̃ (13)

Substituting (10) into (13), we have

V̇ ≤ g(x)

(

−

(

1

g
+

1

g
1
p̄

)

(∆ + 1)
(

x+ xp̄
)

)p

x+ θh(x)|x|1+p̄ − θ̃
˙̂
θ

≤ − g(x)

(

1

g
+

1

g
1
p̄

)p

(∆ + 1)p
(

x+ xp̄
)p
x+ θh(x)|x|1+p̄ − θ̃

˙̂
θ

≤ −

(

(

θ̂h(x)
)

p

p̄

+
(

θ̂h(x)
)

p

p

+ 1

)

(

x+ xp̄
)p
x+ θh(x)|x|1+p̄ − |x|1+p̄ − θ̃

˙̂
θ
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≤ θh(x)|x|1+p̄ − θ̂h(x)|x|1+p̄ − |x|1+p̄ − θ̃
˙̂
θ

≤ θ̃
(

h(x)|x|1+p̄ −
˙̂
θ
)

− |x|1+p̄ (14)

Define the adaptive law as
˙̂
θ = h(x)|x|1+p̄ (15)

Substituting (15) into (14), it can be obtained that

V̇ ≤ −|x|1+p̄ (16)

Theorem 3.1. For high-order system (1) with Assumptions 3.1-3.3, the state-feedback
controller (11) guarantees that the system state is globally asymptotically stable and the
closed-loop signals converge to the origin.

Proof: From (16), it is easily found that, if x 6= 0, V̇ < 0. From Lyapunov stability
theory, we can obtain that V → 0. From (11), we further obtain that x converges to the

origin and θ̃ → 0, which means that the control objective is achieved.

4. Adaptive Stabilization Controller Design for System with Unknown Direc-

tion. Although we have shown the feasibility of controller for system (1) under Assump-
tion 3.3, it is not our task since the sign of control gain remains known. Therefore, in this
section, we extend to investigate more general case which is considered as high-order sys-
tem with unknown control direction and unknown power. And the corresponding function
expression and properties are formulated in the following lemma.

Lemma 4.1. Let V (·) and ς(·) be smooth functions defined on [0, tf ), V (t) ≥ 0, ∀t ∈ [0, tf)
and N(·) be an even smooth Nussbaum-type function. The following inequality holds:

V (t) ≤ c0 + e−c1t

∫ t

0

g(τ)N(ς)ς̇ec1τdτ + e−c1t

∫ t

0

ς̇ec1τdτ

where constant c1 > 0, g(·) is a time-varying parameter which takes values in the unknown
closed intervals I ∈ [l−1, l+1] with 0 /∈ I and c0 represents some suitable constant, then

V (t), ς(t) and
∫ t

0
gN(ς)ς̇dτ must be bounded on [0, tf).

Lemma 4.2. For ∀x ∈ R, |x| − tanh(x/η)x ≤ 0.2785η, where η > 0 ∈ R.

Assumption 4.1. The sign of g(x) remains unknown, with the upper and lower bounds,
such that

g0 ≤ |g(x)| ≤ g1 (17)

where g0 and g1 are respectively the lower and upper bounds of g(x).

Remark 4.1. The final expression of Np(τ) is different from those in existing results

where the one is chosen as N(τ) = eς
2
cos((π/2)ς). Since, N(τ) is the dynamic regulation

parameter, based on the above function properties of Np(τ), and chosen by nonnegative,
it dose not even necessarily need the N(τ) in the lemma.

4.1. Design of the controller and stability analysis. Now, consider the following
function:

Vz =
1

2
x2 (18)

Considering the system (1) under Assumption 4.1 and differentiating (18), one has that

Vz = xẋ = g(x)upx+ d(x)x (19)

From Lemma 3.2 and Assumption 4.1, the control strategy is defined as follows:

u = N(·) ·
(

|∇|
1
p̄ + |∇|

1
p

)

∇ = cx+ âh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

(20)
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τ̇ = cx2 + âh(x) tanh

(

h(x)|x|p̄

γ

)

|x|p̄+1 (21)

where c and γ are deigned parameters, and â is the estimate of a∗. Then, by substituting
(20) into (19) and adding and subtracting the term of τ̇ , one has that

V̇z = g(x)

[

N(·) ·

(

|∇|
1
p̄ + |∇|

1
p

)]p

x+ d(x)x+ τ̇ − cx2 − â tanh

(

h(x)|x|p̄

γ

)

|x|p̄+1 (22)

From Lemma 3.2 and Lemma 4.2 and under Assumption 4.1, it follows that

V̇z ≤ |g(x)||N(·)|p
(

|∇|
1
p̄ + |∇|

1
p

)p

|x|+ θh(x)|x|p̄+1 + τ̇ − cx2

+ âh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

|x|p̄+1

≤ |g(x)||Np(τ)|

(

cx2 + âh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

))

+ τ̇ − cx2

− a∗
(

h(x)|x|p̄ − tanh

(

h(x)|x|p̄

γ

))

− h(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

≤ tanh(α)g(x)Np(τ)

(

cx+ âh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

))

x+ 0.2785η1 + τ̇ − cx2

− a∗
(

h(x)|x|p̄ − tanh

(

h(x)|x|p̄

γ

))

− h(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

(23)

where tanh(α) = tanh

(

g(x)Np(τ)

(

cx+âh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

))

η1

)

.

Consider the following Lyapunov function:

V =
1

2
x2 +

1

2ρ
ã2 (24)

Differentiating the Lyapunov Function, one has

V̇ = xẋ+
1

ρ
ã ˙̂a (25)

Define the adaptive laws as follows

˙̂a = ρh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

− σâ (26)

where σ > 0, γ > 0, ρ > 0 are all designed parameters.
Substituting adaptive law (26) and (23) into (25), one has that

V̇ ≤ tanh(α)g(x)N(τ)pτ̇x+ 0.2785η1 + θh(x)|x|p̄+1 + τ̇ − cx2 + a∗0.2785η2

+ ãh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

− ãh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

+
σ

ρ
ãâ (27)

By Young’s inequality, we have
σ

ρ
ãâ ≤

σ

2ρ
‖ a∗ ‖2 −

σ2

2ρ
ã2 (28)

By substituting (28) into (27), we have

V̇ ≤ −cx2 + tanh(α)g(x)N(τ)pτ̇ + τ̇ + µ+ ãh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

+
σ

2ρ
‖ a∗‖2 −

ã2

2ρ
− ãh(x)|x|p̄ tanh

(

h(x)|x|p̄

γ

)

(29)

V̇ ≤ −DV + (tanh(α)g(x)Np(τ) + 1) τ̇ + µ
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where µ =
(

0.2785η1 + a∗0.2785η2 +
σ
2ρ

‖ a∗‖2
)

, D = min(2c, σ)

V̇ eDt ≤ −DV eDt + (tanh(α)g(x)Np(τ) + 1)τ̇ eDt + µeDt

d

dt

(

V eDt
)

≤ (tanh(α)g(x)Np(τ) + 1)τ̇ + µ)eDt (30)

Integrating both side of Inequality (30), we have that

V ≤

∫ t

0

((tanh(α)g(x)Np(τ) + 1)τ̇ + µ)e−Dtdτ +
µ

D
+ V (0) (31)

From Lemma 4.1 and Lemma 4.2, it can be easily known that V (t), â, τ̇ are all bounded
in [0, tf ). From [21], the same results can be obtained in [0,+∞). Then we obtain that x
is bounded.

Theorem 4.1. Consider system (1) and if Assumptions 3.1, 3.2, 4.1 hold, control law
and adaptive rate are defined by (26). Then, the high-order system with unknown control
direction is asymptotically bounded with the tracking error converging to a neighborhood
of the origin.

Proof: It is not difficult to prove from the above analysis. So, the detailed proof is
omitted.

5. Numerical Example. In this example 1, consider a class of high-order system with
known direction as follows:

{

ẋ = 0.05x2u3 + θ cosx · x5

y = x
(32)

where h(x) = cosx, p = 3, θ = 0.8, g = 0.05, p̄ = 5, p = 1. Obviously, the system

(32) satisfies Assumptions 3.1-3.3. The initial conditions are set as x(0) = 1, θ̂(0) = 1.
According to the controller (10) and adaptive law (15). It can be respectively obtained
as follows:















u = −

(

1

g
+

1

g
1
5

)

(

(

θ̂ cosx
)

1
5

+ θ̂ cosx+ 1

)

(x+ x5)

˙̂
θ = cosx|x|6

(33)

Simulation results are given in Figure 1, which shows that x asymptotically converges to
the origin.
In this example 2, consider a class of high-order system with unknown direction as

follows:
{

y = x

ẋ = −0.05x2u3 + θ cosx|x|5
(34)

where h(x) = cosx, g(x) = −0.05x2, p̄ = 5, p = 3. Clearly, system (34) satisfies Assump-
tions 4.1. The initial conditions are set as x(0) = 1, â(0) = 1. According to the controller
(20) and adaptive law (26), it can be respectively obtained as follows:































u = N(τ)
(

|∇|
1
5 + |∇|

)

τ̇ = 2x2 + â cosx tanh

(

cosx|x|p̄

2

)

|x|6

˙̂a = 0.5â cosx|x|5 tanh

(

cosx|x|5

2

)

− 2â

(35)

Simulation results are given in Figures 2 and 3, which show that x asymptotically
converges to the origin in Figure 2 and the u is bounded in Figure 3.
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Figure 1. The trajectory state of x and its derivative

Figure 2. The trajectory state of x and its derivative

6. Conclusions. This article has studied the problem of stabilization for high-order non-
linear systems with unknown power and control function. By combining the Nussbaum
type gain approach and the upper and lower bounds of p in themes respectively for two
cases for the high-order system, we have presented two control strategies. Two examples
are given to prove the effectiveness of the results. However, there is problem that needs
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Figure 3. The trajectory of control law u

to be considered: control design in this paper needs Assumption 4.1 that the p̄, p must
be known. If we relax this assumption, how to design a controller that can stabilize the
system (1) will be our future work.
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