ICIC Express Letters ICIC International (©2022 ISSN 1881-803X
Volume 16, Number 5, May 2022 pp. 545-553

EVENT-DRIVEN APPROACH IN MICROSERVICES ARCHITECTURE
FOR FLIGHT BOOKING SIMULATION

ENRICO DANISWARA GIOVANNI AND IDA BAGUS KERTHYAYANA MANUABA*

Computer Science Department
Faculty of Computing and Media
Bina Nusantara University
JI. K. H. Syahdan No. 9, Kemanggisan, Palmerah, Jakarta 11480, Indonesia
enrico.giovanni@binus.ac.id; *Corresponding author: bagus.manuaba@binus.ac.id

Received May 2021; accepted August 2021

ABSTRACT. Technological advancement affects several business and industry aspects and
can help to increase their revenue and customer satisfaction. There are several approach-
es taken by software developers to solve business problems. By knowing the benefits and
drawbacks and choosing the right approach, these advancements will improve overall out-
come. This paper discusses an event-driven approach that could be used by businesses
that have high transactions and a need for high reliability and availability for their appli-
cation. In order to establish the benefits of an event-driven approach, this paper describes
tests and comparisons of REST API-driven and event-driven approaches. The testing
methods used stress and load tests. The results from the tests showed that an event-driven
application performed better in terms of throughput, resource consumption, and average
response time compared to an REST API-driven application even in higher loads.
Keywords: Microservices, Event-driven architecture, Command query responsibility
segregation (CQRS), REST API-driven

1. Introduction. Recently, exploring product information and purchasing products on-
line has become a habit in our lives. Based on research done by Lee and Lin [1], they
found that service quality, user satisfaction and trust can be accomplished by having ex-
cellent website design, and a reliable and responsive services. For example, one of the
industries that has made a huge impact in the growth of economic improvement of In-
donesia is tourism. In 2017, Indonesia attained revenue of around US$ 15.2 billion with
approximately 14 million foreign tourists [2].

Currently, technological developments are impacting the tourism industry by increasing
the ease of use for guests in bookings. Online travel agency (OTA) is one of the most
advanced products that are widely available and popular on the market today [3]. OTAs
usually offer a website or mobile application to fulfill their business processes. There are
two main components of a website and a mobile application, which are the user interface
and the application programming interface (API).

The APl is a current technology in providing reliable and responsive services in software
application. APIs can be built under several software architectures such as monolithic,
service-oriented architectures, serverless, and microservices [4]. The difference between
these architectures is in the way they communicate and the maintainability. A number of
industries are not aware about choosing the right software architecture for their website
or mobile application which can impact output in terms of performance, availability, cost
and reliability [5].

DOLI: 10.24507 /icicel.16.05.545

545

546 E. D. GIOVANNI AND I. B. K. MANUABA

In order to meet service quality, user satisfaction and trust to the website or mobile
application, a flawless experience through reliable and responsive services must be provid-
ed by the business owner to the user. In today’s technology, the reliable and responsive
services can be developed by using microservices architecture that divides the application
into a smaller set of services [6, 7].

However, having multiple services that could read and write into one database only, can
cause performance issues. CQRS (command query responsibility segregation) is required
to address this problem by separating the way of recording and retrieving the data. CQRS
is not an architectural pattern, but a code pattern instead. It separates the responsibilities
of writing and reading data into conceptual and physical storage [8].

In microservices, each service could have its own database. However, because the data-
base per service pattern has been applied, business transactions are separated into different
services which may impact the data to be inconsistent. Hence, a communication mechanis-
m is needed to ensure consistent data across multiple services, because applications cannot
only use local ACID transactions (atomicity, consistency, isolation, durability). Therefore,
the problem is how to maintain reliability of the communication between services with
high availability, high throughput, low resource costs, and low response times.

One way to communicate between services in microservices architecture is implementing
an event-based approach [9]. An event-based approach uses events to promote and move
data between those loosely coupled sets of services. Adopting an event-driven approach
can also benefit by providing better response times, increasing flexibility and agility, and
increasing operational efficiency and resilience.

This paper provides an example of a flight booking simulation scenario for an online
reservation system using microservices architecture. In maintaining the reliability of the
communication between services, this paper will focus on implementing an event-driven
architecture in microservices and demonstrating how event sources and CQRS lead to
better performance.

Since the API service in a flight booking simulation scenario can be integrated with
OTA by standard RESTful API [10, 11| conventions via the HTTP method, this pa-
per also compares the performance between REST API-driven and event-driven based
in microservices architecture. Hence, the comparison will focus on the scalability of mi-
croservice with and without an event-based approach.

This paper aims to demonstrate a reliable reservation service that is scalable, easy
to maintain, and follows the latest technology trends by implementing a microservice
architecture and making a comparison between REST API-driven and event-driven based
approaches. Hence, by adopting the right software architecture, it could achieve a stable
service with low latency and high throughput at low resource costs. In addition, it could
also increase user appreciation, improve overall results, and increase revenue for OTAs
and airlines industry.

The following sections discuss more details about problem analysis, solution design,
implementation and testing, and also analysis with discussion, and being closed with
conclusion and possible future work.

2. Problem Analysis. Before microservice architecture became popular, monolithic ar-
chitecture was the main pattern that was used for developing cloud based applications
[7]. In a traditional monolithic approach, the application is only placed in a single direc-
tory hierarchy that bundles the presentation, application logic, business logic, data access
object at the same level.

Adopting new technologies will be very difficult because all modules need to be adjust-
ed. In terms of deployment, it will be very tough to apply continuous deployment, since
the entire application needs to be redeployed which will interrupt background tasks and

ICIC EXPRESS LETTERS, VOL.16, NO.5, 2022 547

may cause problems. Besides, scaling the application will be expensive because it needs
to extend the entire application and cannot scale each component independently [5].

To avoid those problems in the development process, a microservice architecture needs
to be applied. It will be easier to maintain and modify the code because each functionality
is separated into a set of services. Introducing new technologies will also be easier and
it does not affect other services (loosely coupled). Deployment and scaling can also be
done independently based on the resource usage or server load. Furthermore, big compa-
nies such as Netflix, Amazon, and eBay have migrated from monolithic to microservices
architecture [12].

Furthermore, there are factors that need to be taken as consideration in providing a
reliable and responsive services, such as high availability, low response time, security, and
reliability (from user perspective); and also continuous deployment, easy maintenance,
scalability, and low cost (from website business owner perspective).

High availability can be achieved by separating each domain model into a set of ser-
vices. Thus, microservice architecture must be used to solve this issue. Low response time
can be achieved by implementing event-driven architecture because it makes the service
communicate asynchronously. Reliability should be achieved by having no downtime at
any given time and can be accessed from people around the world without having the
need to worry about the scale of the requests. The application must also be easy to main-
tain because as the business goes bigger, there will be more complexity to the system.
Lastly resource usage must be as low as possible to reduce the financial cost needed for
the application.

Hence, this paper is discussing the implementation of microservice architecture com-
bining with event-driven approach and demonstrating how event sources and CQRS lead
to better performance. It means the communication between each service will be asyn-
chronous and does not block the user’s request.

In order to demonstrate how well event-driven approach implemented in microservices
architecture, this paper will also describe testing and comparisons of REST API-driven
and event-driven approaches.

3. Solution Design.

3.1. System architecture. The system architecture for this research is shown in Figure
1. Each request from the user will be directly loaded in balanced way into GraphQL [13],
which is responsible for authorizing the request and forwarding it to another load balancer
to the API gateway.

Focus

Implementation \
AP| Gateway

. Microservices
User Service
GraphQL
Inventory
Service
Client Request /\
| 1 Payment
v Service
Load Balancer Load Balancer Load Balancer
Order Service
Message
Service
GraphQL
API G y

F1GURE 1. Microservices in system architecture diagram for flight booking simulation

548 E. D. GIOVANNI AND I. B. K. MANUABA

In this architecture, there is only one instance for each service but in reality, it will have
multiple instances for each service and that is where load balancers have the function to
choose which instance should receive the request.

3.2. Services flow diagram. Every service in the whole system will use the Quarkus
framework [14] and have the same software architecture as seen in Figure 2.

Write / Publish
Command Command . Update Kafka Source | Events
_Lommand | .
Service/Handler —* Fepository Write Connector .
Ezilfbase Subscribe

‘ % Events Other
Directly Publish Events # Microservice
o Kafka
=
a Other
E Subscribe Microservice
2 o » Events
; = rite =
Fariove Read = Update Event _g
D 193 Listener/Handler g
Que ’ Fiegxd = Either one of these m
Service/Handler &
A 3
ova) ,Foe =7 | e
Retrieve Database Wirite /

Update
FIGURE 2. Design services flow diagram for flight booking simulation

The process of creating/updating and retrieving data is organized separately throughout
the service. When a service receives a write request which is indicated by a command, it
will be validated by the handler and directly written to the write (primary) database or
an event will be published to Kafka [15].

Each service may consume events from a Kafka topic if required by having an event
listener or by configuring a Kafka sink connector (directly write to the write database).

Database per-service pattern is also implemented, in this case MongoDB’s replica set
feature will be used where each database will have a write (primary) and a read (sec-
ondary) database. In regard to exchanging data information throughout services, they
will communicate through Kafka by publishing or consuming events. Figure 3 shows the
detail design of microservices components.

3.3. Activity diagram. Figure 4 shows the main business process of the application.
It starts when a user requests for available inventories. The application will retrieve all
available options and respond with none if there are no available inventories. The user
will select an inventory and complete the booking form. The system will validate if the
selected inventory is still available; if it is not, the user will get a failure response and
if is still available, the user will be prompted to finish payment. After the payment is
conducted by the user, the application will send a request to a third party application as
its payment gateway. If the payment is confirmed by the payment gateway, user will be
notified by email with the issued ticket.

4. Implementation and Testing.

4.1. System requirements. The application can run on any platform that has docker
running since it is containerized into docker images. Then, it can be accessed using any
API client or testing tools. There is also a built-in API documentation and testing tools
using Swagger Ul In order to monitor Kafka cluster status, lists of messages, and con-
nectors, user interfaces are provided using external libraries. We used to develop and run
the application with the following hardware specifications (1st Web Server). Meanwhile,

ICIC EXPRESS LETTERS, VOL.16, NO.5,

Microservice Components

2022

549

A

e
=5

Command Query
Endpoint Endpoint
¥ ¥
User Service
Command Query <
Service Service

Replica Set

Command Query
Endpoint Endpoint
¥ ¥
Product Service
r* |Command Query
Service Service

Replica Set

Primary DB
Secondary
DB

DB
.

4< Event Bus (Kafka)(>7

¥

Command Query
Endpoint Endpoint
¥ ¥
Order Service
> |Command Query
Service Service

)

DB
v
Command Query
Endpoint Endpoint
¥ ¥
Payment Service
Command Query <
Service Service
¥
Replica Set

Message

Replica Set

Service

Secondary
DB

¥

Replica Set

DB

F1GURE 3. Microservices components design

Secondary

External Service

not empty
3 result Provide
: venion Seléct Requester Book e —
= Inventory Inventory e
X
Ticket Issuance
Payment Notification To
0 i User
: Receive
() Provide
2 Inventory f-——-----
= Information
]
o
]
lll
£
=
) @ 30 minutes
>
a
E
>
o
o

FIGURE 4. Order activity diagram

550 E. D. GIOVANNI AND I. B. K. MANUABA

TABLE 1. Web server machine specifications

Specifications 1st Web Server 2nd Web Server
Device MacBook Ppro (13-inch, 2017) —
Operating system macOS Catalina version 10.15 Windows 10 Version 10.0.18362.836
Processor 3,1 GHz Dual-Core Intel Core i5 | 3,8 GHz Quad-Core Intel Core i5 7T600K
RAM 8 GB 2133 MHz LPDDR3 16 GB 3200 MHz DDR4
SSD 256 GB 256 GB
GPU Intel Iris Plus Graphis 650 1536 MB Nvidia GTX 1070 8088 MB

because of the hardware limitations of the web server the load, stress tests, and mon-
itoring are done using another machine (2nd Web Server) with the following hardware
specifications (see Table 1).

4.2. Stress and load testing. Load and stress testing were conducted to compare the
performance of an event-driven application with the API-driven application. The scala-
bility test was not listed here because of the time limitation in finishing this report. The
stress and load test consisted of threads and one ramp-up period, where a thread defined
a user and it can be concluded that if it had 10 threads and 1 second ramp-up period,
each thread would start 0.1 second after the previous thread began. Table 2 shows the
stress and load test properties.

TABLE 2. Stress and load test properties

Properties Value
Taste case Find inventory and place order
Number of threads (users) | Test 1: 10 - Test 2: 25 - Test 3: 50
Ramp-up period (seconds) 1
Loop count 100
Predefined data
Name Data count
Cancellation policy 100
Inventory 130,000
Payment methods 3
Payment transaction 110,000
Order 110,000
User 50,000
Message log 110,000
Application properties
Name Value
MongoDB min pool size 10
MongoDB max pool size 50
MongoDB max wait queue size 50
MongoDB connect timeout 10 s

The stress and load testing are done using Apache JMeter [16] which runs on another
machine that also monitors the resource usages on each docker container. It is visualized
in Grafana [17] dashboard by reading Prometheus’ data that acts as the data source which
examines exposed metrics by cAdvisor [18], and Node Exporter.

In the test case the most crucial part on an online reservation system is the order. The
inventory is chosen randomly by JMeter’s feature by selecting one inventory id from the
API response. The place order request will also be randomly generated by the authors’
JMeter script. The tests will have a different number of threads (users) to simulate how

ICIC EXPRESS LETTERS, VOL.16, NO.5, 2022 551

a real online reservation system is used. It increases gradually to show the results based
on how the services will handle requests from users.

4.3. Comparison test result. In order to compare the performance of API-driven and
event-driven, the authors created two exactly same applications that shared the same
code base with different approaches in terms of service communication.

Based on the result in Table 3, there are three types of tests done to measure the per-
formance of each application. Both had the same predefined data, application properties
and test properties as listed earlier. Each service in both applications had the same JVM
maximum memory allocation of 256 MB.

TABLE 3. Result of three different tests

Measurements Test 1 Test 2 Test 3
Event-driven | API-driven | Event-driven | API-driven | Event-driven | API-driven
Samples 1000 1000 2500 2500 5000 5000
Average (ms) 199 317 481 644 991 647
Min (ms) 12 34 8 30 19 15
Max (ms) 9230 5251 7821 9990 10019 28658
Error (%) 0 0 0 0 0 30
Throughput 41.7/sec 29.3/sec 47.0/sec 37.9/sec 47.4/sec 62.8/sec
Average CPU/ 13.24% 19.19% 14.78% 28.47% 19.9% 12.99%
Memory 1022.32 MB 958.11 MB 967.41 MB 1042.14 MB 928.13 MB 1078.97 MB

5. Analysis and Discussion. The predefined data was provided to simulate a real use
case of the application which would have thousands of inventories and transactions. The
authors found that in the idle condition most of the event-driven application services
consumed more CPU usage. It was because at period one the services thread needed to
reassure Kafka that they are still active and facilitates rebalancing when a new consumer
joined or left the group (known as a heartbeat).

The first test consisted of ten threads and one second ramp-up period, where it could
be concluded that each thread started 0.1 second after the previous thread began. The re-
sult was that the event-driven application produced higher throughput by approximately
30% compared with the API-driven application. On average, based on the JMeter results,
it also produced lower response times. Also, event-driven application services mostly con-
sumed less CPU and memory usage.

The same case also happened in the second test, although in higher load, the event-
driven application produced higher throughput by almost 30% compared to the API-
driven application. It also consumed less CPU and memory usage. However, the result
shown in the third test is notably different between both applications. The event-driven
application successfully processed all requests with 0% of errors and almost identical
throughput as the second test; meanwhile, there were 30% errors and higher throughput
in the API-driven application. Besides, because of the errors, the API-driven application
consumed fewer resources compared with the event-driven application.

On the other hand, based on the third test, the throughput of API-driven application
was significantly higher because of the error rate where it directly responded when the
services were accessing MongoDB. After tracing the application logs, the product service
was found throwing an exception caused by MongoDB max wait queue size was exceed-
ed resulting in no data retrieval and data loss. This was also why in the last test the
API-driven application consumed less CPU and memory compared to the event-driven
application.

Based on the tests done, the problem stated in Problem Analysis section is resolved by
having an event-driven approach. The event-driven application created greater output in
terms of availability, as there were no processing errors throughout the tests, compared

552 E. D. GIOVANNI AND I. B. K. MANUABA

with the API-driven application which produced errors in higher loads. It also produced
higher throughput and lower response timed as was seen from stress and load testing
results.

Furthermore, the resource consumption on services in event-driven application mostly
costs less compared with the API-driven application. Thus, this also answers the aims
listed on the Introduction section where low latency and high throughput services can be
created using the event-driven approach. No processing errors in any services meaning
ACID transactions were guaranteed. Even though errors may occur, it can be directly
resumed using Kafka’s resume offset feature.

6. Conclusion and Future Work.

6.1. Conclusion. This paper describes an implementation of microservices architecture
using event-driven approach. Event-driven is a popular approach with the benefits of
having loosely coupled services, asynchronous (non-blocking resources), services that can
be scaled independently, replaying events, and high performance.

To show the event-driven approach in producing better outcomes, the authors com-
pared it with REST API-driven approach. This comparison was simulated by having two
applications with different approaches that shared the same code base. The full architec-
ture design can be found in Sub-section 3.3 where we combined an event-driven approach
with CQRS in order to produce better output.

To compare the performance of the event-driven and API-driven approaches, three
stress and load tests were done with one scenario that had different testing properties.
Based on the test result, the event-driven application produced better performance in
terms of throughput, availability, reliability, latency, and resource consumption. Even
in high loads, the event-driven application managed to handle all requests without any
application errors.

To sum up, this project established that an event-driven approach combined with CQRS
can produce better performance by approximately 30% by having higher availability,
higher throughput, lower response time, better performance and easily scalable with less
resource usage.

6.2. Future work. There are several ways to improve the application. The following is
a list of items that can be improved:

e Resume/replay events. The current application does not support resume or replay
events automatically; instead it requires the user to resume or replay events manually
from the command line interface.

e Providing real data set to benchmark the applications. To improve the accuracy of
stress and load testing, a real data set can be provided.

REFERENCES

[1] G. G. Lee and H. F. Lin, Customer perceptions of e-service quality in online shopping, International
Journal of Retail € Distribution Management, vol.33, no.2, pp.161-176, 2005.

[2] J. Sihite and A. Nugroho, H, exploring the Indonesian tourism destination via Indonesia.Travel
@indtravel, Proc. of the 2nd International Conference on Tourism, Gastronomy, and Tourist Desti-
nation (ICTGTD2018), pp.29-32, 2018.

[3] L. Hendriyati, The influence of online travel agents on room reservations at the Mutiara Malioboro
hotel in Yogyakarta, Media Wisata, vol.17, no.1, pp.1-10, 2019.

[4] A. Balalaie, A. Heydarnoori and P. Jamshidi, Microservices architecture enables DevOps: Migration
to a cloud-native architecture, IEEE Software, vol.33, no.3, pp.42-52, 2016.

[5] S. Sharma, Mastering Microservices with Java: Build Enterprise Microservices with Spring Boot 2.0,
Spring Cloud, and Angular, Packt Publishing Ltd., 2019.

[6] Microservices.io, Command Query Responsibility Segregation (CQRS), https://microservices.io/pat
terns/data/cqrs.html, Accessed on 5-03-2021.

[7] S. Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly Media, Inc., 2015.

8]
[9]

[10]

[11]

[18]

ICIC EXPRESS LETTERS, VOL.16, NO.5, 2022 553

B. M. Michelson, Event-driven architecture overview, Patricia Seybold Group, vol.2, no.12, 2006.
F. Marchioni and M. Little, Hands-on Cloud-Native Applications with Java and Quarkus: Build High
Performance, Kubernetes-Native Java Serverless Applications, Packt Publishing Ltd., 2019.

L. Richardson, M. Amundsen, M. Amundsen and S. Ruby, RESTful Web APIs: Services for a
Changing World, O’Reilly Media, Inc., 2013.

H. Subramanian and P. Raj, Hands-on RESTful API Design Patterns and Best Practices: Design,
Dewvelop, and Deploy Highly Adaptable, Scalable, and Secure RESTful Web APIs, Packt Publishing
Ltd., 2019.

Carlos, Four Companies that Migrated from Monolith to Microservices, https: //www.kambu.pl/blog/
companies-that-migrated-from-monolith-to-microservices/, Accessed on 18-05-2021.

S. Buna, Learning GraphQL and Relay, Packt Publishing Ltd., 2016.

T. Koleoso, Test quarkus applications, in Beginning Quarkus Framework, Build Cloud-Native En-
terprise Java Applications and Microservices, Springer, 2020.

M. Kumar and C. Singh, Building Data Streaming Applications with Apache Kafka, Packt Publishing
Ltd., 2017.

S. Matam and J. Jain, Pro Apache JMeter: Web Application Performance Testing, Apress, 2017.
T. T. Hoang, M. T. Tao and P. H. Au, Research and Implementation of Monitoring Systems
Prometheus and Grafana, Ph.D. Thesis, FPTU HCM, 2020.

J. Makai, New Solutions in IT Monitoring: cAdvisor and Collectd, Tech. Report., CERN, 2015.

