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Abstract. Two-sided base is the smallest set generated two-sided ideal under some
condition. The aim of this paper is to introduce the concept of two-sided bases of an
ordered LA-Γ-semigroup with left identity. We give a characterization when a non-empty
subset of an ordered LA-Γ-semigroup with left identity is a two-sided base of an ordered
Γ-semigroup with left identity. Finally, a characterization when the complement of the
union of all two-sided bases of an ordered Γ-semigroup with left identity is maximal will
be given.
Keywords: Ordered LA-Γ-semigroups, Γ-ideals, Two-sided bases, Maximal proper Γ-
ideals

1. Introduction. Based on the notion of two-sided ideals of a semigroup generated by
a non-empty set, the concept of two-sided bases of a semigroup has been introduced and
studied by Fabrici [1]. Later, Changpas and Kummoon [2] studied and described the
structure of a Γ-semigroup containing two-sided bases. The structure of a Γ-semigroup
was introduced by Sen [3] as a generalization of ternary semigroup and semigroup and
the structure of an LA-semigroup was introduced by Kazim and Naseeruddin [4] as a
generalization of commutative semigroups. The structure of an LA-Γ-semigroups (Γ-
AG-groupoid), where Γ is a non-empty set, was given by Shah and Rehman [5]. The
concept of an ordered LA-Γ-semigroups was introduced by Khan et al. [6]. This algebraic
structure is a generalization of LA-Γ-semigroups, also see [7, 8]. The purpose of this paper
is to introduce the concept of two-sided bases of an ordered LA-Γ-semigroup, and extend
results in [1] to ordered LA-Γ-semigroups. In Section 2, we recall some basic definitions
and results of ordered LA-Γ-semigroups. In Section 3, we define two-sided bases of ordered
LA-Γ-semigroups and give their basic results. Section 4 is the main part of this paper,
and we show remarkable results of two-sided bases of ordered LA-Γ-semigroups. Finally,
Section 5 concludes the paper.
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2. Ordered LA-Γ-Semigroups. We provide some definitions and results which will be
used for this paper.

Definition 2.1. ([5]) Let S and Γ be non-empty sets, then S is called an LA-Γ-semigroup
if there exists a mapping S ×Γ× S → S written as (a, γ, b) and denoted by aγb such that
S satisfied the left invertive law (aγb)βc = (cγb)βa for all a, b, c ∈ S and γ, β ∈ Γ.

Definition 2.2. ([5]) An element e of an LA-Γ-semigroup S is called a left identity if
eγa = a for all a ∈ S and γ ∈ Γ.

Lemma 2.1. ([5]) If S is an LA-Γ-semigroup with left identity e, then SΓS = S and
S = eΓS = SΓe.

Proposition 2.1. ([9]) Let S be an LA-Γ-semigroup.

(1) Every LA-Γ-semigroup with left identity satisfies the equalities aγ(bβc) = bγ(aβc)
and (aγb)β(cαd) = (dγc)β(bαa) for all a, b, c, d ∈ S and γ, β, α ∈ Γ.

(2) An LA-Γ-semigroup S is Γ-medial, i.e., (aγb)β(cγd) = (aγc)β(bαd) = (aγc)β(bαd)
for all a, b, c, d ∈ S and γ, β, α ∈ Γ.

Definition 2.3. ([6]) An ordered LA-Γ-semigroup S (abbreviated as a po-LA-Γ-semi-
group) is a structure (S,Γ, ·,≤) in which the following conditions hold.

(1) (S,Γ, ·) is an LA-Γ-semigroup.
(2) (S,≤) is a poset (i.e., reflexive, anti-symmetric and transitive).
(3) For all a, b and x ∈ S, a ≤ b implies aαx ≤ bαx and xαa ≤ xαb for all α ∈ Γ.

Throughout this paper, unless stated otherwise, S stands for an ordered LA-Γ-semigroup.
For a non-empty subsets A, B of an ordered LA-Γ-semigroup S, we defined

AΓB = {aγb | a ∈ A, b ∈ B and γ ∈ Γ} and (A] = {t ∈ S | t ≤ a, for some a ∈ A}.
In particular, we write BΓa instead for BΓ{a}, aΓB instead for {a}ΓB, a ∪ BΓa ∪

aΓs ∪ (SΓa)ΓS instead for {a} ∪BΓa ∪ aΓs ∪ (SΓa)ΓS and (a] instead for ({a}].

Definition 2.4. [7] A non-empty subset A of an ordered LA-Γ-semigroup S is called an
LA-Γ-subsemigroup of S if AΓA ⊆ A.

Definition 2.5. [6] A non-empty subset A of an ordered LA-Γ-semigroup S is called a
left (resp. right) Γ-ideal of S if (i) SΓA ⊆ A (AΓS ⊆ A) and (ii) if a ∈ A and b ∈ S
such that b ≤ a, then b ∈ A. A non-empty subset A of an ordered LA-Γ-semigroup S is
called a Γ-ideal of S if is both a left and right Γ-ideal of S.

Definition 2.6. A proper Γ-ideal A of an ordered LA-Γ-semigroup S(A ̸= S) is said to
be maximal if for any Γ-ideal B of S, A ⊆ B ⊆ S implies A = B or B = S.

Lemma 2.2. ([6]) Let S be an ordered LA-Γ-semigroup, and then the following statements
are true.

(1) A ⊆ (A], for all A ⊆ S.
(2) If A ⊆ B ⊆ S then (A] ⊆ (B].
(3) (A]Γ(B] ⊆ (AΓB], for all subsets A,B of S.
(4) (A] = ((A]], for all A ⊆ S.
(5) For every left (resp. right) Γ-ideal T of S, (T ] = T .
(6) ((A]Γ(B]] ⊆ (AΓB], for all subsets A, B of S.
(7) (A ∪B] = (A] ∪ (B], for all subsets A, B of S.
(8) If A and B are two Γ-ideal of S, then the union A ∪B is a Γ-ideal of S.

Lemma 2.3. Let S be an ordered LA-Γ-semigroup and Ai be a Γ-ideal of S for all i ∈ I.
If

∩
i∈I

Ai ̸= ∅, then
∩
i∈I

Ai is a Γ-ideal of S.
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Proof: It is obvious. �
Let A be a non-empty subset of an ordered LA-Γ-semigroup S. The intersection of all

Γ-ideals of S containing A is the smallest Γ-ideal of S generated by A and is denoted by
(A)T .

Lemma 2.4. Let A be a non-empty subset of an ordered LA-Γ-semigroup S with left
identity e. Then (A)T = (A ∪ SΓA ∪ AΓS ∪ (SΓA)ΓS].

Proof: Straightforward. �
For an element a ∈ S, we write ({a})T by (a)T which is called the principal Γ-ideal of

S generated by a. Thus, (a)T = (a ∪ SΓa ∪ aΓS ∪ (SΓa)ΓS].

Corollary 2.1. Let S be an ordered LA-Γ-semigroup with left identity. Then (SΓb∪ bΓS
∪(SΓb)ΓS] is a Γ-ideal of S for all b ∈ S.

3. Two-Sided Bases of Ordered LA-Γ-Semigroups. We begin this section with the
definition of two-sided bases of an ordered LA-Γ-semigroup with left identity as follows.

Definition 3.1. Let S be an ordered LA-Γ-semigroup with left identity. A non-empty
subset A of S is called a two-sided base of S if it satisfies the following two conditions.

(1) S = (A ∪ SΓA ∪ AΓS ∪ (SΓA)ΓS].
(2) If B is a subset of A such that S = (B ∪ SΓB ∪BΓS ∪ (SΓB)ΓS], then B = A.

Example 3.1. Let S = {a, b, c, d, e} and Γ = {γ} with multiplication defined by

γ a b c d c
a a a a a a
b a b c d c
c a c b c d
d a d c b c
c a c d c b

and ≤= {(a, a), (b, b), (c, c), (d, d), (c, c), (a, b), (a, c), (a, d), (a, c)}. Then S is an ordered
LA-Γ-semigroup with left identity b. We have the two-sided bases of S are A1 = {b}, A2

= {c}, A3 = {d} and A4 = {e}. However, A5 = {a} is not a two-sided base.

Example 3.2. Let S = {a, b, c, d, e} and Γ = {α} with multiplication defined by

α a b c d c
a a a a a a
b a b b b b
c a b d c c
d a b c d c
c a b c c d

and ≤= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b)}. Then S is an ordered LA-Γ-semigroup
with left identity d. We have the two-sided bases of S are A1 = {c}, A2 = {d} and A3 =
{e}. However, A4 = {a} and A5 = {b} are not a two-sided bases.

To characterize when a non-empty subset of ordered LA-Γ-semigroup S with left iden-
tity is a two-sided base of the ordered LA-Γ-semigroup S with left identity we need the
quasi-ordering defined as follows.

Definition 3.2. Let S be an ordered LA-Γ-semigroup. We define a quasi-ordering on S
for any a, b ∈ S, a ≤I b ⇔ (a)T ⊆ (b)T .

We write a <I b if a ≤I b but a ̸= b, i.e., aT ⊂ bT .

The following example shows that the order ≤I defined above is not, in general, a
partial order.
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Example 3.3. From Example 3.2, we have that (c)T ⊆ (d)T (i.e., c ≤I d) and (d)T ⊆ (c)T
(i.e., d ≤I c), but c ̸= d. Thus, ≤I is not a partial order on S.

Lemma 3.1. Let S be an ordered LA-Γ-semigroup. For any a, b ∈ S, if a ≤ b, then
a ≤I b.

Proof: Let a, b ∈ S such that a ≤ b. We will show that a ≤I b, i.e., (a)T ⊆ (b)T .
Let x ∈ (a)T . Since x ∈ (a)T = (a ∪ SΓa ∪ aΓS ∪ (SΓa)ΓS], x ≤ y for some y ∈
a ∪ SΓa ∪ aΓS ∪ (SΓa)ΓS. There are four cases to consider.
Case 1: y = a. Then x ≤ a ≤ b, so x ≤ b where b ∈ b∪SΓb∪ bΓS ∪ (SΓb)ΓS. We have

that x ∈ (b ∪ SΓb ∪ bΓS ∪ (SΓb)ΓS]; thus, x ∈ (b)T . So a ∈ (b)T .
Case 2: y ∈ SΓa. Then y = sγa for some s ∈ S, γ ∈ Γ. Since a ≤ b, then sγa ≤ sγb

and sγb ∈ SΓb ⊆ b ∪ SΓb ∪ bΓS ∪ (SΓb)ΓS. Since x ≤ y ≤ sγb where sγb ∈ b ∪ SΓb ∪
bΓS ∪ (SΓb)ΓS, x ∈ (b)T . So SΓa ⊆ (b)T .
Case 3: y ∈ aΓS. Then y = aγs for some s ∈ S, γ ∈ Γ. Since a ≤ b, then aγs ≤ bγs

and bγs ∈ bΓS ⊆ b ∪ SΓb ∪ bΓS ∪ (SΓb)ΓS. Since x ≤ y ≤ bγs where bγs ∈ b ∪ SΓb ∪
bΓS ∪ (SΓb)ΓS, x ∈ (b)T . So aΓS ⊆ (b)T .
Case 4: y ∈ (SΓa)ΓS. Then y = (s1γa)βs2 for some s1, s2 ∈ S, γ, β ∈ Γ. Since a ≤

b, then s1γa ≤ s1γb and (s1γa)βs2 ≤ (s1γb)βs2 where (s1γb)βs2 ∈ (SΓb)ΓS ⊆ b∪
SΓb ∪ bΓS ∪ (SΓb)ΓS. Since x ≤ y ≤ (s1γb)βs2 where (s1γb)βs2 ∈ (SΓb)ΓS ⊆ b ∪ SΓb ∪
bΓS ∪ (SΓb)ΓS, x ∈ (b)T . So (SΓa)ΓS ⊆ (b)T . Hence a ∪ SΓa ∪ aΓS ∪ (SΓa)ΓS ⊆ (b)T
and so (a)T = (a ∪ SΓa ∪ aΓS ∪ (SΓa)ΓS] ⊆ ((b)T ] = (b)T . Therefore, (a)T ⊆ (b)T , i.e.,
a ≤I b. �
Lemma 3.2. Let A be a two-sided base of an ordered LA-Γ-semigroup S with left identity
and let a, b ∈ A. If a ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS], then a = b.

Proof: Assume that a, b ∈ A such that a ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS], and suppose
that a ̸= b. Let B = A\{a}. Since a ̸= b, b ∈ B. To show that (A)T ⊆ (B)T , we let
x ∈ (A∪SΓA∪AΓS ∪ (SΓA)ΓS]. Then x ≤ z for some z ∈ A∪SΓA∪AΓS ∪ (SΓA)ΓS.
There are four cases to consider.
Case 1: z ∈ A. If z ̸= a, then z ∈ B ⊆ (B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS]. Since

x ≤ z and z ∈ (B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS], x ∈ ((B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS]] =
(B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS]. Thus, x ∈ (B)T . If z = a, then by assumption we have
z = a ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS] ⊆ (B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS]. Since x ≤ z and
z ∈ (B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS], then x ∈ ((B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS]] = (B ∪
SΓB ∪BΓS ∪ (SΓB)ΓS]. So x ∈ (B)T .
Case 2: z ∈ SΓA. Then z = sγc for some s ∈ S, γ ∈ Γ and c ∈ A. If c ̸= a, then

z = sγc ∈ SΓB ⊆ (B)T . Since x ≤ z and z ∈ (B)T , we have x ∈ (B)T . If c = a, then
z = sγa ∈ SΓ(SΓb ∪ bΓS ∪ (SΓb)ΓS]. Since (SΓb ∪ bΓS ∪ (SΓb)ΓS] is a Γ-ideal of S for
all b ∈ S, z ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS] ⊆ (B ∪ SΓB ∪ BΓS ∪ (SΓB)ΓS] = (B)T . Since
x ≤ z and z ∈ (B)T , we have x ∈ (B)T .
Case 3: z ∈ AΓS. Then z = cγs for some c ∈ A, γ ∈ Γ and s ∈ S. If c ̸= a, then

z = cγs ∈ BΓS ⊆ (B)T . Since x ≤ z and z ∈ (B)T , we have x ∈ (B)T . If c = a, then
z = aγs ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS]ΓS. Since (SΓb ∪ bΓS ∪ (SΓb)ΓS] is a Γ-ideal of S for
all b ∈ S, z ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS] ⊆ (B)T . Since x ≤ z and z ∈ (B)T , x ∈ (B)T .
Case 4: z ∈ (SΓA)ΓS. Then z = (s1γc)βs2 for some s1, s2 ∈ S, γ, β ∈ Γ and c ∈ A.

If c ̸= a, then z = (s1γc)βs2 ∈ (SΓB)ΓS ⊆ (B)T . Since x ≤ z and z ∈ (B)T , we
have x ∈ (B)T . If c = a, then z = (s1γa) βs2 ∈ (SΓ(SΓb ∪ bΓS ∪ (SΓb)ΓS])ΓS. Since
(SΓb ∪ bΓS ∪ (SΓb)ΓS] is a Γ-ideal of S for all b ∈ S, z ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS]ΓS ⊆
(SΓb∪bΓS∪(SΓb)ΓS] ⊆ (B)T . Since x ≤ z and z ∈ (B)T , x ∈ (B)T . Thus, (A)T ⊆ (B)T .
By S = (A)T ⊆ (B)T ⊆ S, hence (B)T = S. This is a contradiction. Therefore, a = b. �

4. Main Results. In this section, the algebraic structure of an ordered LA-Γ-semigroup
with left identity containing two-sided bases will be presented.
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Theorem 4.1. A non-empty subset A of an ordered LA-Γ-semigroup S with left identity,
is a two-sided base of S if and only if A satisfies the following two conditions:

(1) for any x ∈ S there exists a ∈ A such that x ≤I a;
(2) for any a, b ∈ A, if a ̸= b, then neither a ≤I b nor b ≤I a.

Proof: Assume that A is a two-sided base of S. Then S = (A)T . Let x ∈ S. Since x ∈
S = (A∪SΓA∪AΓS∪(SΓA)ΓS], we have x ≤ y for some y ∈ A∪SΓA∪AΓS∪(SΓA)ΓS.
There are four cases to consider.

Case 1: y ∈ A. Since x ≤ y, by Lemma 3.1, we have that x ≤I y.
Case 2: y ∈ SΓA. Then y = sγa for some s ∈ S, γ ∈ Γ and a ∈ A. By y =

sγa ∈ SΓa ⊆ (a)T , SΓy ⊆ SΓ(SΓa) = (SΓS)Γ(SΓa) = (aΓS)Γ(SΓS) = (aΓS)ΓS =
(SΓS)Γa = SΓa ⊆ (a)T , yΓS ⊆ (SΓa)ΓS ⊆ (a)T and (SΓy)ΓS ⊆ (SΓ(SΓa))ΓS =
((SΓS)Γ(SΓa))ΓS = ((aΓS)Γ(SΓS))ΓS = ((aΓS)ΓS)ΓS = ((SΓS)Γa)ΓS = (SΓa)ΓS ⊆
(a)T . Then y ∪ SΓy ∪ yΓS ∪ (SΓy)ΓS ⊆ (a)T , and so (y)T = (y ∪ SΓy ∪ yΓS ∪ (SΓy)ΓS]
⊆ ((a)T ] = (a)T , i.e., y ≤I a. Since x ≤ y, by Lemma 3.1, we have x ≤I y. So x ≤I y ≤I a.
Thus, x ≤I a.

Case 3: y ∈ AΓS. Then y = aγs for some a ∈ A, γ ∈ Γ and s ∈ S. By y = aγs ∈
aΓS ⊆ (a)T , SΓy ⊆ SΓ(aΓS) = aΓ(SΓS) = aΓS ⊆ (a)T , yΓS ⊆ (aΓS)ΓS = (SΓS)Γa =
SΓa ⊆ (a)T and (SΓy)ΓS ⊆ (SΓ(aΓS))ΓS = (aΓ(SΓS))ΓS = (aΓS)ΓS = (SΓS)Γa =
SΓa ⊆ (a)T . Then y∪SΓy∪ yΓS ∪ΓS ⊆ (a)T , and so (y)T = (y∪SΓy∪ yΓS ∪ (SΓy)ΓS]
⊆ ((a)T ] = (a)T , i.e., y ≤T a. Since x ≤ y, by Lemma 3.1, we have x ≤I y. So x ≤I y ≤I a.
Thus, x ≤I a.

Case 4: y ∈ (SΓA)ΓS. Then y = (s1γa)βs2 for some s1, s2 ∈ S, γ, β ∈ Γ and a ∈ A. By
y = (s1γa)βs2 ∈ (SΓa)ΓS ⊆ (a)T , SΓy ⊆ SΓ((SΓa)ΓS) = (SΓa)Γ(SΓS) = (SΓa)ΓS ⊆
(a)T , yΓS ⊆ ((SΓa)ΓS)ΓS = (SΓS)Γ(SΓa) = (aΓS)Γ(SΓS) = (aΓS)ΓS = (SΓS)Γa =
SΓa ⊆ (a)T and (SΓy)ΓS ⊆ (SΓ((SΓa)ΓS))ΓS = ((SΓa)Γ(SΓS))ΓS = ((SΓa)ΓS)ΓS =
(SΓS)Γ(SΓa) = (aΓS)Γ(SΓS) = (aΓS)ΓS = (SΓS)Γa = SΓa ⊆ (a)T . Then y ∪ SΓy ∪
yΓS ∪ (SΓy)ΓS ⊆ (a)T , and so (y)T = (y ∪ SΓy ∪ yΓS ∪ (SΓy)ΓS] ⊆ ((a)T ] = (a)T , i.e.,
y ≤I a. Since x ≤ y, by Lemma 3.1, we have x ≤I y. So x ≤I y ≤I a. Thus, x ≤I a.

Hence the condition (1) holds. Next, let a, b ∈ A such that a ̸= b. Suppose a ≤I b. Set
B = A\{a}. Then b ∈ B and B ⊆ A. Let x ∈ S. By condition (1), there exists c ∈ A
such that x ≤I c, i.e., (x)T ⊆ (c)T . There are two cases to consider. If c ̸= a, then c ∈ B.
So x ∈ (x)T ⊆ (c)T ⊆ (B)T . If c = a, then x ≤I a ≤ bI and x ≤I b, i.e., (x)T ⊆ (b)T .
So x ∈ (x)T ⊆ (b)T ⊆ (B)T . Thus, S ⊆ (B)T and so S = (B)T . This is a contradiction.
Hence a ≤I b is false. The case b ≤I a proved similarly. Hence the condition (2) holds.

Conversely, assume that the conditions (1) and (2) hold. We will show that A is a
two-sided base of S. To show that S = (A)T , let x ∈ S, by condition (1), there exists
a ∈ A such that x ≤I a. Then x ∈ (x)T ⊆ (a)T ⊆ (A)T . So S ⊆ (A)T and clearly
(A)T ⊆ S. Thus, S = (A)T . Next, to show that A is a minimal subset of S with the
property S = (A)T , let B ⊂ A such that S = (B)T . Then there exists a ∈ A and a /∈ B.
Since a ∈ A, a ∈ S = (B)T . We will show that a /∈ (B]. If a ∈ (B], then a ≤ y
for some y ∈ B, by Lemma 3.1, a ≤I y. This is a contradiction. So a /∈ (B]. Thus,
a ∈ (SΓB∪BΓS∪ (SΓB)ΓS]. Since a ∈ (SΓB∪BΓS∪ (SΓB)S], we have a ≤ c for some
c ∈ SΓB ∪BΓS ∪ (SΓB)ΓS. There are three cases to consider.

Case 1: c ∈ SΓB. Then c = sγb1 for some s ∈ S, γ ∈ Γ and b1 ∈ B. Since a ≤ c and
c = sγb1 ∈ SΓb1 ⊆ b1 ∪ SΓb1 ∪ b1ΓS ∪ (SΓb1)ΓS, a ∈ (b1 ∪ SΓb1 ∪ b1ΓS ∪ (SΓb1)ΓS] =
(b1)T . It follows that (a)T ⊆ (b1)T . Thus, a ≤I b1 where a, b1 ∈ A. This is a contradiction.

Case 2: c ∈ BΓS. Then c = b2γs for some s ∈ S, γ ∈ Γ and b2 ∈ B. Since a ≤ c and
c = b2γs ∈ b2ΓS ⊆ b2 ∪ SΓb2 ∪ b2ΓS ∪ (SΓb2)ΓS, a ∈ (b2 ∪ SΓb2 ∪ b2ΓS ∪ (SΓb2)ΓS] =
(b2)T . It follows that (a)T ⊆ (b2)T . Thus, a ≤I b2 where a, b2 ∈ A. This is a contradiction.

Case 3: c ∈ (SΓB)ΓS. Then c = (s1γb3)βs2 for some s1, s2 ∈ S, γ, β ∈ Γ and b3 ∈ B.
Since a ≤ c and c = (s1γb3)βs1 ∈ (SΓb3)ΓS ⊆ b3 ∪ SΓb3 ∪ b3ΓS ∪ (SΓb3)ΓS, a ∈ (b3 ∪
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SΓb3 ∪ b3ΓS ∪ (SΓb3)ΓS] = (b3)T . It follows that (a)T ⊆ (b3)T . Thus, a ≤I b3 where a, b3
∈ A. This is a contradiction.
Therefore, A is a two-sided base of S. The proof is completed. �

Theorem 4.2. Let A be a two-sided base of an ordered LA-Γ-semigroup S with left iden-
tity, such that (a)T = (b)T , for some a in A and b in S. If a ̸= b, then S contains at the
least two two-sided bases.

Proof: Assume that a ̸= b. Suppose that b ∈ A. Since a ̸= b and a ∈ (a)T = (b)T = (b
∪SΓb ∪ bΓS ∪ (SΓb)ΓS] = (b] ∪ (SΓb ∪ bΓS ∪ (SΓb)ΓS], a ∈ (b] or a ∈ (SΓb ∪ bΓS ∪
(SΓb)ΓS]. If a ∈ (b], then a ≤ b, by Lemma 3.1, we have a ≤I b where a, b ∈ A. This
is a contradiction. So a ∈ (SΓb ∪ bΓS ∪ (SΓb)ΓS]. By Lemma 3.2, a = b. This is a
contradiction. Thus, b ∈ S\A. Setting B = (A\{a}) ∪ {b}, then B ̸= A. We will show
that B is a two-sided base of S using Theorem 4.1. First, let x ∈ S. Since A is a two-sided
base of S, by Theorem 4.1(1), x ≤I c for some c ∈ A. If c ̸= a, then c ∈ B. If c = a, then
(c)T = (a)T . Since (a)T = (b)T , we have (c)T = (b)T , i.e., c ≤I b. So x ≤I c ≤I b. Thus,
x ≤I b where b ∈ B. Next, let c1, c2 ∈ B such that c1 ̸= c2. We will show that neither
c1 ≤I c2 nor c2 ≤I c1. Then there are four cases to consider.
Case 1: c1 ̸= b and c2 ̸= b. Then c1, c2 ∈ A. Since A is a two-sided base of S, then

neither c1 ≤I c2 nor c2 ≤I c1.
Case 2: c1 ̸= b and c2 = b. Then (c2)T = (b)T . If c1 ≤I c2, then (c1)T ⊆ (c2)T =

(b)T = (a)T . Thus, c1 ≤I a where c1, a ∈ A. This is contradiction. If c2 ≤I c1, then
(a)T = (b)T = (c2)T ⊆ (c1)T . Thus, a ≤I c1 where c1, a ∈ A. This is a contradiction.
Case 3: c1 = b and c2 ̸= b. Then (c1)T = (b)T . If c1 ≤I c2, then (a)T = (b)T =

(c1)T ⊆ (c2)T . Thus, a ≤I c2 where c2, a ∈ A. This is contradiction. If c2 ≤I c1, then
(c2)T ⊆ (c1)T = (b)T = (a)T . Thus, c2 ≤I a where c2, a ∈ A. This is a contradiction.
Case 4: c1 = b and c2 = b. This is impossible.
Therefore, B is a two-sided base of S. �
The following corollary follows directly from Theorem 4.2.

Corollary 4.1. Let A be a two-sided base of an ordered LA-Γ-semigroup S with left
identity, and let a ∈ A. If (x)T = (a)T for some x ∈ S, x ̸= a, then x belongs to some
two-sided base of S, which is different from A.

Theorem 4.3. Let A and B be two-sided bases of ordered LA-Γ-semigroup S with left
identity. Then A and B have the same cardinality.

Proof: Let A and B be two-sided bases of S. Let a ∈ A. Since B is a two-sided base
of S, by Theorem 4.1(1), there exists b ∈ B such that a ≤I b. Similarly, since A is a two-
sided base of S, there exists a∗ ∈ A such that b ≤I a

∗. So a ≤I b ≤I a
∗, and a ≤I a

∗. By
Theorem 4.1(2), a = a∗. Hence (a)T = (b)T . Now, define a mapping φ : A → B; φ(a) = b
for all a ∈ A. First, to show that φ is well-defined, let a1, a2 ∈ A such that a1 = a2,
φ(a1) = b1, and φ(a2) = b2 for some b1, b2 ∈ B. Then (a1)T = (b1)T and (a2)T = (b2)T .
Since a1 = a2, (a1)T = (a2)T . Thus, (a1)T = (a2)T = (b1)T = (b2)T , so b1 ≤I b2 and
b2 ≤I b1. By Theorem 4.1(2), b1 = b2. Hence φ(a1) = φ(a2). Therefore, φ is well-
defined. Next, to show that φ is one-to-one, let a1, a2 ∈ A such that φ(a1) = φ(a2). Then
φ(a1) = φ(a2) = b for some b ∈ B. We have (a1)T = (a2)T = (b)T . Since (a1)T = (a2)T ,
a1 ≤I a2 and a2 ≤I a1. Thus, a1 = a2. Therefore, φ is one-to-one. Finally, to show that
φ is onto, let b ∈ B, and then there exists a ∈ A such that b ≤I a. Similarly, there exists
b∗ ∈ B such that a ≤I b∗. Then b ≤I a ≤I b∗, i.e., b ≤I b∗. By Theorem 4.1(2), b = b∗.
So b ≤I a and a ≤I b, i.e., (b)T = (a)T and (a)T = (b)T . Thus, (a)T = (b)T . Therefore, φ
is onto. This completes the proof. �
If a two-sided base of an ordered LA-Γ-semigroup S with left identity, is a Γ-ideal of S,

then S = (A∪SΓA∪AΓS ∪ (SΓA)ΓS] ⊆ (A∪A∪A∪A] = (A] = A. Hence S = A. The
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converse statement is obvious. Then we conclude that a two-sided base A of an ordered
LA-Γ-semigroup S with left identity, is a Γ-ideal of S if and only if A = S.

In Example 3.1, it is observed that not every two-sided base of an ordered LA-Γ-
semigroup S with left identity, is an LA-Γ-subsemigroup. The following theorem gives
necessary and sufficient conditions of a two-sided base of an ordered LA-Γ-semigroup S
with left identity, to be an LA-Γ-subsemigroup.

Theorem 4.4. A two-sided base A of an ordered LA-Γ-semigroup S with left identity, is
an LA-Γ-subsemigroup if and only if A = {a} with aγa = a for all γ ∈ Γ.

Proof: Assume that A is an LA-Γ-subsemigroup of S. Let a, b ∈ A and γ ∈ Γ.
Since A is an LA-Γ-subsemigroup S, we have aγb ∈ A. Set aγb = c. Then c = aγb ∈
SΓb ⊆ (SΓb ∪ bΓS ∪ SΓbΓS]. By Lemma 3.2, we have c = b. So aγb = b. Similarly,
c = aγb ∈ aΓS ⊆ (SΓa ∪ aΓS ∪ SΓaΓS]. By Lemma 3.2, we have c = a. So aγb = a.
Thus, a = b. Therefore, A = {a} with aγa = a. The converse statement is clear. �

The union of all two-sided bases of an ordered LA-Γ-semigroup S with left identity is
denoted by C.

Theorem 4.5. Let S be an ordered LA-Γ-semigroup with left identity. Then S\C = ∅
or a Γ-ideal of S.

Proof: Assume that S\C ̸= ∅. We will show that S\C is a Γ-ideal of S. Let x ∈ S,
γ ∈ Γ and a ∈ S\C. To show that xγa ∈ S\C and aγx ∈ S\C, suppose that xγa /∈ S\C.
Then xγa ∈ C. Thus, xγa ∈ A for a two-sided base A of S. Let xγa = b for some b ∈ A.
Since b = xγa ∈ SΓa ⊆ (a)T , b ∈ (a)T . It follows that (b)T ⊆ (a)T . If (b)T = (a)T , by
Corollary 4.1, we have that a ∈ C. This is a contradiction. Thus, (b)T ⊂ (a)T , i.e., b <I a.
Since A is a two-sided base of S, by Theorem 4.1(1), there exists b1 ∈ A such that a ≤ b1.
Since b <I a ≤I b1, b ≤I b1 where b, b1 ∈ A. This is a contradiction. Thus, xγa ∈ S\C.
Similarly, we can show that aγx ∈ S\C. Next, to show that if a1 ∈ S\C and a2 ∈ S such
that a2 ≤ a1, then a2 ∈ S\C. Suppose that a2 ∈ C. Then a2 ∈ B for a two-sided base
B of S. Since B is a two-sided base of S, by Theorem 4.1(1), there exists a3 ∈ B such
that a1 ≤I a3. Since a2 ≤ a1, by Lemma 3.1, a2 ≤I a1. We have that a2 ≤I a3 where
a2, a3 ∈ B. This is a contradiction. Thus, a2 /∈ C, i.e., a2 ∈ S\C. Therefore, S\C is a
Γ-ideal of S. �

Let M∗ be a proper Γ-ideal of an ordered LA-Γ-semigroup S with left identity, contain-
ing every proper Γ-ideal of S.

Theorem 4.6. Let S be an ordered LA-Γ-semigroup with left identity, and ∅ ̸= C ⊂ S.
Then S\C = M∗ if and only if every two-sided base of S is one-element base.

Proof: Assume that S\C = M∗. Then S\C is a maximal proper Γ-ideal of S. We will
show that for every a ∈ C, C ⊆ (a)T . Let a ∈ C. Suppose C ̸⊆ (a)T . Since C ̸⊆ (a)T and
∅ ̸= C ⊂ S, (a)T is a proper Γ-ideal of S. Thus, a ∈ (a)T ⊆ M∗ = S\C, and so a ∈ S\C,
i.e., a /∈ C. This is a contradiction. Hence C ⊆ (a)T for every a ∈ C. We will show
that for every a ∈ C, S\C ⊆ (a)T . Suppose that S\C ̸⊂ (a∗)T for some a∗ ∈ C. Then
(a∗)T ̸= S, and so (a∗)T is a proper Γ-ideal of S. Thus, a∗ ∈ (a∗)T ⊆ M∗ = S\C, and
so a∗ ∈ S\C, i.e., a∗ /∈ C. This is a contradiction. Hence S\C ⊆ (a)T for every a ∈ C.
Since S\C ⊆ (a)T and C ⊆ (a)T for every a ∈ C, we have S = (S\C)∪C ⊆ (a)T ⊆ S. So
S = (a)T for every a ∈ C. Thus, {a} is a two-sided base of S. Next, let A be a two-sided
base of S. We will show that a = b for every a, b ∈ A. Suppose that there exists a, b ∈ A
such that a ̸= b. Since A is a two-sided base of S, a ∈ A ⊆ C and a ∈ C. So S = (a)T .
Since a ̸= b and b ∈ S = (a ∪ SΓa ∪ aΓS ∪ (SΓa)ΓS] = (a] ∪ (SΓa ∪ aΓS ∪ (SΓa)ΓS],
b ∈ (a] or b ∈ (SΓa ∪ aΓS ∪ (SΓa)ΓS]. If b ∈ (a], then b ≤ a by Lemma 3.1, b ≤I a.
This is a contradiction. So b ∈ (SΓa ∪ aΓS ∪ (SΓa)ΓS]. By Lemma 3.2, a = b. This is a
contradiction. Therefore, every two-sided base of S is one-element base.
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Conversely, assume that every two-sided base of S is a one-element base. Then S = (a)T
for every a ∈ C. To show that S\C = M∗, since ∅ ̸= C ⊂ S, ∅ ̸= S\C ⊂ S. By
Theorem 4.5, S\C is a proper Γ-ideal of S. Next, let M be a proper Γ-ideal of S such
that S\C ⊂ M ⊂ S. Since S\C ⊂ M , there exists x ∈ M such that x /∈ S\C, i.e., x ∈ C.
We have x ∈ M ∩ C. So M ∩ C ̸= ∅. Let b ∈ M ∩ C. Since b ∈ M , SΓb ⊆ SΓM ⊆ M ,
bΓS ⊆ MΓS ⊆ M and (SΓb)ΓS ⊆ (SΓM)ΓS ⊆ MΓS ⊆ M , b ∪ SΓb ∪ bΓS ∪ (SΓb)ΓS
⊆ M . We have (b)T = (b

∪
SΓb ∪ bΓS

∪
(SΓb)ΓS] ⊆ (M ] = M . Since b ∈ C, by

assumption, we have (b)T = S. So S = (b)T ⊆ M ⊂ S. Thus, M = S. This is a
contradiction. Hence S\C is a maximal proper Γ-ideal of S. Finally, let B be a Γ-ideal
of S such that B ̸⊆ S\C. Since B ̸⊆ S\C, there exists x ∈ B such that x /∈ S\C, i.e.,
x ∈ C. So B ∩ C ̸= ∅. Let c ∈ B ∩ C. Since c ∈ B, SΓc ⊆ SΓB ⊆ B, cΓS ⊆ BΓS ⊆ B
and (SΓc)ΓS ⊆ (SΓB)ΓS ⊆ BΓS ⊆ B, c ∪ SΓc ∪ cΓS ∪ (SΓc)ΓS ⊆ B. We have
(c)T = (c ∪ SΓc ∪ cΓS ∪ (SΓc)ΓS] ⊆ (B] = B. Since c ∈ C, S = (c)T ⊆ B ⊆ S. Thus,
S = B. Therefore, S\C = M∗. �
Theorem 4.7. Let S be an ordered LA-Γ-semigroup with left identity. If e is a left
identity of S, then {e} is a two-sided base of S.

Proof: Assume that e is a left identity of S. Let A = {e}. We will show that A is a
two-sided base of S. To show that S = (A)T , since e is a left identity of S, by Lemma
2.1, we have S = eΓS = SΓe. Since S = SΓe, we have (SΓe)ΓS = (SΓe)Γ(SΓe) =
(SΓS)Γ(eΓe) = SΓe. So e ∪ SΓe ∪ eΓS ∪ (SΓe)Γe = S. Thus, (A)T = (e ∪ SΓe ∪ eΓS ∪
(SΓe)ΓS] = (S] = S. Hence (A)T = S. Clearly, A is a minimal subset of S with the
property S = (A)T . Therefore, A is a two-sided base of S. �
In Examples 3.1 and 3.2, it is observed that every two-sided base of an ordered LA-

Γ-semigroup with left identity is one-element base. This leads to proving the following
corollary. From Theorem 4.3 and Theorem 4.7, we can easily obtain the following result.

Corollary 4.2. Let S be an ordered LA-Γ-semigroup with left identity. Then every two-
sided base of S is one-element base.

In Example 3.2, we have the all two-sided bases of S are A1 = {c}, A2 = {d} and
A3 = {e}. Then S\C = {a, b} is a maximal proper Γ-ideal of S containing every proper
Γ-ideal of S. We have the following result is combining Theorem 4.6 and Corollary 4.2.

Theorem 4.8. Let S be an ordered LA-Γ-semigroup with left identity. Then S\C is a
maximal proper Γ-ideal of S containing all proper Γ-ideals of S.

Proof: Let S be an ordered LA-Γ-semigroup with left identity. By Corollary 4.2, we
have every two-sided base of S is one-element base. Since every two-sided base of S is
one element base, by Theorem 4.6, we obtain S\C = M∗. Therefore, S\C is a maximal
proper Γ-ideal of S containing all proper Γ-ideals of S. �

5. Conclusion. In this paper, we focus on the results for two-sided bases of ordered
LA-Γ-semigroups with left identity. We show in Corollary 4.2 that every two-sided base
of an ordered LA-Γ-semigroup with left identity is one-element base. Finally, we prove
in Theorem 4.8 that the complement of union of all two-sided base of an ordered LA-
Γ-semigroup with left identity is the maximal proper Γ-ideal. In the future work, we
can study other results in this algebraic structures. Moreover, we may use the essential
(m,n)-ideal of semigroups defined in [10] to define essential (m,n)-bases of semigroups
and study their properties.
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