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Abstract. A drive-by-wire system has been of much interest as a next-generation meth-
od for research and manufacturing in automotive industries due to numerous advantages
such as fuel efficiency, flexible designs, preventive maintenance, and better driving com-
fort. Nonetheless, safety-related issues are still challenging for an effective failure detec-
tion method. This paper therefore presents a design method of the steer-by-wire control
using fault tolerant control technique for a 4-wheeled vehicle in which the steering can con-
trol the left and right rear wheels independently through an in-wheel motor. The proposed
fault tolerant control technique comprises feedback fault detectors in order to compensate
and estimate a system failure, and offers a rapid self-recovery to stabilize the overall ve-
hicle system. Mathematical models and numeration analysis examples are included. The
results show that the system is stabilized even if any single wheel fails, and the transient
response error is less than 0.03. The proposed technique offers not only a simple control
block diagram design for real application in microcontroller, but also a potentially full
stabilization under system failure.
Keywords: Steer-by-wire, Disturbance observer, Fault tolerant control system

1. Introduction. A drive-by-wire system has continuously been of much interest in the
next-generation automotive manufacturing industry. Historically, vehicle steering systems
have been introduced by various technologies, including (i) pure mechanical system inte-
gration, (ii) hydraulic power-assisted system, (iii) electro-hydraulic power-assisted steer-
ing, and (iv) electric power-assisted steering, prior to recent advances in drive-by-wire
system. In the technical aspects of the drive-by-wire system, the mechanical transmission
mechanism is eliminated and driver’s intention will be converted to an electric signal,
and hence the controller subsequently drives the actuator. As a result of using the steer-
by-wire system, explicit advantages are the improvement of fuel efficiency, realization of
preventive safety technology, improvement of collision safety, and also the improvement of
mounting position and design freedom. In addition, further advantages are vehicle weight
reduction, an expansion of the vehicle interior space, and driving comfort feelings [1].

In previous studies, the by-wire system has been considered in various mechanisms
such as steer-by-wire, shift-by-wire and brake-by-wire systems [2]. In particular, this paper
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focuses mainly on the steer-by-wire system that uses a wire harness instead of the steering
shaft.
Nonetheless, a significant shortcoming of the steer-by-wire system is in the case where

the steering operation cannot be performed under failure or malfunction conditions, and
therefore safety is required to be ensured [4]. As a solution to this critical issue, an effective
control technique for failure compensation should be considered intensively. In particular
for automotive application, a vehicle can independently control the driving force of the
rear wheels with an in-wheel motor [5].
In this paper, a design method of the steer-by-wire control using fault tolerant control

technique will be proposed for a 4-wheeled vehicle in which the steering can control the
left and right rear wheels independently through an in-wheel motor. The proposed fault
tolerant control technique comprises a fault detector, which is similar to a disturbance
observer, in order to estimate a system failure and operate as a rapid self-recovery to
stabilize the overall system. Mathematical models and numeration analysis examples are
included. This paper is organized as follows. Section 2 describes a steer-by-wire system
and problem formulations. Section 3 proposes a new design method for fault tolerant con-
trols. In Section 4, a particular case of numerical examples will illustrate the effectiveness
of the proposed method. Concluding remarks will be drawn in Section 5.

2. Problem Formulation. Consider a vehicle that has steer-by-wire and can control
the left and right rear wheels independently shown in Figure 1. The equivalent three-
wheel model to Figure 1 and steering system model considered in this paper are shown in
Figure 2 and Figure 3, repectively. The meaning of symbols in Figure 2 and Figure 3 are
summarized in Table 1. Assume that we do not consider that transient phenomena in case
that the vehicle is suddenly accelerated or decelerated. In addition, we do not consider
the case such that suddenly large steering operations occur. From these assumptions, the
running speed of the vehicle can be regarded as constant [5].

Figure 1. Vehicle structure

Under these assumptions, from Figure 2 and Figure 3, equations of motions are written
by

mV̇ = 2Xf +Xrr +Xrl, (1)

mV
(
β̇ + γ

)
= 2Yf + Yrr + Yrl, (2)

Jγ̇ = 2Yf lf − (Yrr + Yrl)lr +
dr
2
Xdiff (s), (3)

and
Jsδ̈ + Csδ̇ = T (s)− 2ξYf , (4)

where

Yf = −Kf

(
β +

lf
V
γ − δ

)
, (5)
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Yrr = Yrl = −Kr

(
β − lr

V
γ

)
, (6)

and
Xdiff = Xrr −Xrl. (7)

Figure 2. Vehicle model

Figure 3. Steer model

The behavior of the vehicle when acceleration is generated is examined. There are two
types of acceleration generated by steering operation. One is a lateral acceleration in the
case of emergency avoidance. The other is a yaw rate in case that the vehicle turns.
When we consider steering response, we need to examine the vehicle behavior of both
lateral acceleration and yaw rate. A new physical quantity denoted by D∗(t) that linearly
combines the response of yaw rate and lateral acceleration is defined as

D∗(t) =
(
β̇ + γ

)
dV + γ(1− d)V, (8)

where d (0 ≤ d ≤ 1) is an association constant [6]. We regard T (s) and Xdiff (s) as input
and D∗(t) as an output of the plant.
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Table 1. The meaning of symbols

Symbol The meaning of symbol Unit

m Vehicle mass kg

V Vehicle velocity m/s

Xf Front tire driving/breaking force N

Xrr Rear right tire driving/breaking force N

Xrl Rear left tire driving/breaking force N

β Vehicle slip angle rad

γ Yaw rate rad/s

Yf Front tire cornering force N

Yrr Rear right tire cornering force N

Yrl Rear left tire cornering force N

J Moment of vehicle inertia kgm2

lf Distance between front tire and center m

lr Distance between rear tire and center m

dr Rear tread m

Xdiff Rear tire driving force difference N

δ Vehicle-wheel steering angle rad

Js Moment of steering inertia kgm2

Cs Damping coefficient of steering kgm2/s

T Steering motor torque Nm

ξ Trail m

Kf Front tire cornering stiffness N/rad

Kr Rear tire cornering stiffness N/rad

From the assumption that vehicle speed is constant, (1)-(8) are expressed by the state
space expression written by {

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
, (9)

where

x(t) =


β
γ

δ̇
δ

 , (10)

u(t) =

[
T (t)

Xdiff (t)

]
, (11)

y(t) = D∗(t), (12)
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A =



−2(Kf +Kr)

mV
−
{
1 +

2(lfKf − lrKr)

mV 2

}
0

2Kf

mV

−2(lfKf − lrKr)

J
−
2
(
l2fKf + l2rKr

)
JV

0
2lfKf

J

2ξKf

Js

2ξKf lf
JsV

−Cs

Js
−2ξKf

Js

0 0 1 0


, (13)

B =
[
B1 B2

]
=



0 0

0
dr
2J

1

Js
0

0 0

 , (14)

and

C =

[
−2d(Kf +Kr)

m
−2d(lfKf − lrKr)

mV
+ (1− d)V 0

2dKf

m

]
. (15)

The transfer function from u to y in (9) is written by

y(s) = G(s)u(s) ∈ R(s), (16)

where
G(s) =

[
G1(s) G2(s)

]
∈ RH1×2

∞ , (17)

G1(s) = C(sI − A)−1B1, (18)

G2(s) = C(sI − A)−1B2, (19)

and

u(s) =

[
u1(s)

u2(s)

]
∈ R2(s). (20)

In the case that the handle motor torque breaks, that is the system has a failure, the
plant G(s) = [ G1(s) G2(s) ] is changed to G(s) = [ 0 G2(s) ].

The problem considered in this paper is to propose a design method for control system
that makes the output y(s) follows the reference input r(s) even when the system is
failure or not, where r(s) ∈ R(s). Therefore, we design a control system that satisfies the
following equation

lim
t→∞

{r(t)− y(t)} = 0. (21)

3. Controller Design. In this section, we propose a design method for control system
that makes the output y(s) follow the reference input r(s) even when the system is failure
or not. In order to solve this problem, the control system in Figure 4 is considered. Here,
C(s) ∈ R2(s) is a controller to stabilize the control system in Figure 4, G(s) ∈ RH1×2

∞ is
the plant such that when the system is normal

G(s) =
[
G1(s) G2(s)

]
, (22)

and when the system is failure

G(s) =
[
0 G2(s)

]
. (23)

d̂(s) ∈ R(s) works as a fault detector, F1(s) ∈ RH1×2
∞ and F2(s) ∈ RH∞ are controllers

for fault detector and F̂ (s) ∈ RH2×1
∞ is a controller to compensate the influence of the

failure.
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Figure 4. Fault tolerant control system

Next we explain the controller in Figure 4. d̂(s) works as a fault detector, that is
following expressions hold.

1) When the system is normal, that is G(s) is written by (22),

d̂(s) = 0 (24)

is satisfied.
2) When the system is failure, that is G(s) is written by (23),

d̂(s) =
(
G(s)− Ĝ(s)

)
u(s) = G1(s)u1(s) (25)

is satisfied.

From simple manipulations, when F1(s) and F2(s) are settled by

F1(s) =
[
G1(s) G2(s)

]
, (26)

and

F2(s) = −I, (27)

then d̂(s) works as a fault detector.

It is necessary to design F̂ (s) so that the output difference between normal state and

failure state of the system and the output difference when F̂ (s)d̂(s) input to G(s) when the

system is failure are equal. Therefore, F̂ (s) is designed to satisfy the following equation

G2(s)F̂ (s)d̂(s) = G1(s)u1(s). (28)

There is no F̂ (s) satisfying (28) for any u1(s) and any d̂(s). In order to satisfy a condition
in (28) for the low-frequence range

F̂ (s) =

 0

1

G2o(s)
q(s)

 , (29)

where q(s) is a low pass filter written by

q(s) =
1

(1 + τs)α
, (30)

τ is a small positive number, α is a positive integer to make q(s) in (30) proper and G2o(s)
is an outer function of G2(s) satisfying

G2(s) = G2i(s)G2o(s), (31)
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and G2i(s) is an inner function satisfying G2i(0) = 1. Note that in the low frequency range
ω satisfying q(jω) ≃ 1, (28) is satisfied. Therefore, in order to satisfy q(jω) in the wide
frequency range, τ in (30) is settled small.

Next, a design method for C(s) in Figure 4 is explained. Since G(s) in (17) is stable
and the parameterization of all stabilizing controllers by [7], C(s) written by

C(s) =

 Q(s)

1−Q(s)G1(s)

0

 (32)

stabilizes control system in Figure 4 under the assumption that Q(s) ∈ RH∞. In order
to make the output y(s) follow the step reference input r(s) without a steady state error,
Q(s) is settled by

Q(s) =
1

G1(s)
q̂(s), (33)

where

q̂(s) =
1

(1 + τq)αq
, (34)

τq is a positive number and αq is a positive integer to make q̂(s) in (34) proper.

4. Numerical Example. In this section, we show a numerical example to illustrate the
effectiveness of the proposed method. Table 2 shows the related parameters for vehicle
model [1].

Table 2. Parameters for simulation

Symbol Value Unit

m 1400 kg

J 2457 kgm2

lf 1.02 m

lr 1.58 m

dr 1.48 m

Js 11.98 kgm2

Cs 9 kgm2/s

Kf 33700 N/rad

Kr 56200 N/rad

ξ 0.05 m

V 10 m/s

d 0.5 −

From Table 2 and (17), G1(s) and G2(s) are given by

G1(s) =
2.0093s2 + 46.2900s+ 413.5481

s4 + 27.8684s3 + 494.8547s2 + 5.6161 · 103s+ 2.0333 · 104
, (35)

and

G2(s) =
0.0023s3 + 0.00352s2 + 0.8719s+ 5.8851

s4 + 27.8684s3 + 494.8547s2 + 5.6161 · 103s+ 2.0333 · 104
. (36)

For the plant G(s) in (17), we design a control system in Figure 4. F1(s) and F2(s) in

Figure 4 are settled by (26) and (27), respectively. F̂ (s) in Figure 4 is designed by (29),
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where low pass filter q(s) is chosen as

q(s) =
1

0.001s+ 1
. (37)

Then F̂ (s) is written by

F̂ (s) =

 0

s4 + 27.8684s3 + 494.8547s2 + 5.6161 · 103s+ 2.0333 · 104

(0.001s+ 1)(0.023s3 + 0.00352s2 + 0.8719s+ 5.8851)

 . (38)

C(s) in Figure 4 is designed by (32), where Q(s) is given by (33) and

q̂(s) =
1

(0.001s+ 1)2
. (39)

Then we have

C(s) =

 s4 + 27.8684s3 + 494.8547s2 + 5.6161 · 103s+ 2.0333 · 104

0.00000201s4 + 0.04023229s3 + 0.09299355s2 + 0.8270962s

0

 . (40)

Using above parameters, we show the response of Figure 4. When r(t) = 1 and the
failure occurs at t = 10 [sec], that is after t = 10 [sec], G1(s) = 0, the response of the
error

e(t) = r(t)− y(t) (41)

is shown in Figure 5, where the dotted line shows the response of error e(t). Figure 5
shows that

1) when the system is normal, the control system in Figure 4 is stable;
2) when the system is normal, the output y(t) follows the step reference input without

steady state error;
3) even if the system is failure, the control system in Figure 4 is stable;
4) when the system is failure, the output y(t) follows the reference input without steady

state error.

Figure 5. Response of the error e(t) = r(t)− y(t)
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When r(s) = sin(5t) and the failure occurs at t = 10 [s], that is after t = 10 [s],
G1(s) = 0, the response of the error

e(t) = r(t)− y(t) (42)

is shown in Figure 6, where the dotted line shows the response of error e(t). Figure 6
shows that

1) when the system is normal, the control system in Figure 4 is stable;
2) when the system is normal, the output y(t) follows the reference input with small

steady state error. From the discussion in Section 3, in order to make the steady
state error smaller, τq in (34) is set smaller;

3) even if the system is failure, the control system in Figure 4 is stable;
4) when the system is failure, the output y(t) follows the reference input with small

steady state error. From the discussion in Section 3, in order to make the steady
state error smaller, τq in (34) is set smaller.

Figure 6. Response of the error e(t) = r(t)− y(t)

5. Conclusions. In this paper, we have proposed a design method for control system for
steer-by-wire using the fault tolerant control system. Numerical examples are illustrated
to show the effectiveness of the proposed method.
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