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Abstract. In this study, the application of classifiers to tax prediction is investigat-
ed. Five supervised learning classifiers are considered: artificial neural network (ANN),
Näıve Bayes classifier (NBC), decision trees (DT), logistic regression (LgR) and Rules.
The performance of four ensemble classifiers: Vote, Stacking (stacked generalization),
Adaboost (adaptive boosting) and Bagging (bootstrap aggregating) is also demonstrated
and evaluated in terms of their ability to correctly predict or classify. Examining the
performance of the base classifiers and ensemble classifiers showed Rules and Bagging to
have the highest accuracies. The results further show the homogeneous ensemble classi-
fiers to significantly outperform the heterogeneous ensemble classifiers. Vote and Stacking
are substantially inferior while Bagging and Adaboost represent a superior approach to
classifying data. The statistical significance of the results is confirmed by the Analysis of
Variance (ANOVA) test.
Keywords: Ensemble classifiers, Experiments, Classification, Performance measures

1. Introduction. The idea of building a predictive model that integrates multiple mod-
els has been investigated by several authors [1-3]. [1] developed a robust classification
procedure based on ensembles of classifiers, with each classifier constructed from a differ-
ent set of predictors determined by a random partition of the entire set of predictors. The
proposed methods combined the results of multiple classifiers to achieve a substantially
improved prediction compared to the optimal single classifier. [2] developed an integrat-
ed intrusion detection system by combining SVM with Adaboost. A few years later [3]
expanded tree-based classifiers using a meta-algorithm called “LogitBoost” in the mining
process. [4] suggested an ensemble of configured neural networks to improve the predictive
performance of a single neural network.

Some researchers [5-7] start with a set of selected classifiers as constituent classifiers.
Four different classifiers, linear discrimination, logistic regression and two different neural
networks, were considered for combination [6]. Again, [7] suggested an ensemble method-
ology, which builds a classification model by integrating multiple classifiers, to improve
prediction performance.

[8] used an ensemble of support vector machines (SVMs) to build a binary radiation
induced lung injury (radiation pneumonitis (RP) risk model) from clinical and dosimetric
parameters. Patient treatment data were partitioned into balanced subsets to prevent
model bias. Forward feature selection, maximizing the area under the curve (AUC) for
a cross-validated ROC curve, was performed on each subset. Model parameter selection
and construction occurred concurrently via alternating SVM and gradient descent steps
to minimize estimated generalization error. They showed that an ensemble classifier with
a mean fusion function, five component SVMs, and a limit of five features per classifier
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exhibited a mean AUC of 0.818. This was an improvement over previous SVM models of
RP risk.
A computer-based method for differentiating normal and pathological larynges on the

basis of high-speed video-endoscopy (HSV) was applied. HSV recordings were collect-
ed from 101 patients with normal larynges, leukoplakia, nodules or polyps. After pre-
processing, samples were assessed for the number of glottal regions present during the
open phase, the symmetry of the glottal area, the convex nature of the vocal folds and
the ratio of the minimal to maximal glottal area. A decision-tree based method with
SVMs at the tree nodes was used to separate samples. Normal samples were differen-
tiated from pathological samples with a sensitivity of 91.1% and a specificity of 81.8%.
When samples were divided into normal, nodule, polyp and leukoplakia groups, samples
were correctly separated 70.3% of the time. The combination of SVM and decision tree
improved the differentiating capabilities of the parameters employed [9].
[10] also conducted a comparative study of various ensemble methods with perspective

taxonomy. These methods included Bagging, Boosting, Random Trees, Random Forest,
Random Subspace Stacking, and Voting. They compared these ensemble methods to a
single classifier Näıve Bayes. A series of benchmarking experiments on public domain
datasets, showed that applying classifier ensemble methods to predicting software defect
could achieve a better performance than using a single classifier. A program which ran
experiments on public-domain data, and which could be used by any researcher was
developed by [11]. In all seven ensemble methods, Voting and Random Forest had obvious
performance superiority over other methods, and Stacking had a better generalization
ability.
A classifier ensemble is generated by training multiple learners for the same task and

then combining their predictions. There are different ways in which ensembles can be
generated with the resulting output from each classifier and then combined to classify new
instances. The popular approaches to creating ensembles include changing the instances
used for training through techniques such as Bagging [12], Boosting [13], Stacking [14],
changing the features used in training [15], and introducing randomness in the classifier
itself [16]. The method used in this study is changing the instances used for training.
The contribution of the study is to show the accuracy of five classifiers for income

tax prediction and show how the use of ensemble classifiers improves pattern prediction
and further show that homogeneous ensemble classifiers are better predictive models than
heterogeneous ones. The base classifier systems that were evaluated are artificial neu-
ral network (ANN), Näıve Bayes classifier (NBC), decision trees (DT), logistic regression
(LgR) and Rules and the ensemble classifier systems that were evaluated are Vote, Sta-
cking (stacked generalization), Adaboost (adaptive boosting) and Bagging (bootstrap
aggregating). The paper is organized as follows. Section 2 discusses the research method-
ology. Experiments and results are presented in Sections 3 and 4 respectively, while Section
5 discusses the conclusions.

2. Research Methods.

2.1. Same algorithm, different training examples. Statistics has primarily focused
on constructing multiple models by manipulating the training data [17]. The same algo-
rithm is run several times, and each time with a different set of training examples. Meth-
ods like Bagging [12], and Boosting [13] construct multiple classifiers by applying a single
learning algorithm to different samples of a single dataset. Manipulating this dataset,
two methods are employed: random sampling with replacement, or bootstrap sampling in
Bagging and weighting of the misclassified training samples in Boosting. Techniques for
combining the predictions obtained from single classifiers occur in different ways. These
combinations can be done in several ways. One can use expectation, or product.
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Bagging, is a collection of similar homogeneous classifiers built on re-sampled training
data and held together by a combination method.Adaboost, a collection of similar ho-
mogeneous classifiers as well, on the other hand, takes a different approach to building
the ensemble. It constructs a layered classifier. Each round of Adaboost chooses a new
classifier from a set of potential classifiers constructed from training data weighted, or
re-sampled, according to the mis-classifications of the previous round. The new classifier
is selected so as to minimize the total ensemble error. In the early stages of ensemble
construction, Adaboost has few weak classifiers and each is focused on different areas of
the training space; the effect of this is to primarily reduce bias. As the ensemble size
grows, the scope for bias reduction diminishes and error from variance is improved.

2.2. Different algorithms, same training example. The other approach used, is sim-
ilar to the method of [18], which uses a single dataset to generate classifiers by applying
different learning algorithms with heterogeneous model representations. Stacking com-
bines multiple classifiers to induce a higher-level classifier with improved performance.
A learning algorithm is used to determine how the outputs of the classifiers should be
combined. The original dataset constitutes the level one data and all the base classifiers
run at this level. The level two data are the outputs of the base classifiers and another
learning process occurs using as input the level two data and as output the final prediction
as depicted in Figure 1.

Figure 1. Parallel architecture

In the Voting framework for combining classifiers, the predictions of the learning al-
gorithms are combined according to a static Voting scheme, which does not change with
training dataset. The Voting scheme remains the same for all the different training sets
and sets of learning algorithms (or base-level classifiers). The simplest Voting scheme is
the plurality vote. According to this Voting scheme, each learning algorithm casts a vote
for its prediction. The example is classified in the class that collects the most votes.

In Figure 1, a set C = {C1, C2, . . . , CN} of learning algorithms or classifiers is generated
by applying the learning algorithms A1, A2, . . . , AN to a single training dataset S. It is
assumed that each of the learning algorithms from C predicts a probability distribution
over the possible class values. Thus, the prediction of the single classifier C when applied
to example x is a probability distribution vector: PC(x) = (PC(c1|x), PC(c2|x), . . . ,
PC(ck|x)), where {c1, c2, . . . , ck} is a set of possible class values and PC(ci|x) denotes
the probability that example x belongs to class ci as predicted by classifier C. The class
cj with the highest class probability PC(cj|x) is predicted by classifier C.

2.3. Multiple classifier systems (MCSs). MCSs can be classified [19] into one of
three architectural types: Static Parallel (SP), Multi-Stage (MS) and Dynamic Classifier
Selection (DCS). The outputs from each classifier are combined to deliver a final classi-
fication decision. A large number of combination functions are available. These include
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voting methods (simple majority vote, weighted majority vote, the product or sum of
model outputs also known as the product rule, the minimum rule, the maximum rule);
rank based methods (borda count); probabilistic methods (Bayesian methods). This study
used static parallel method. Figure 1 is probably the most popular architecture and it is
where two or more classifiers are developed independently in parallel [20].

2.4. Performance measures. The following performance measures were considered.

2.4.1. Accuracy and computation time. To measure the performance of classifiers, the
training set/test set methodology is employed. For each run, each dataset is split randomly
into 80% training set and 20% testing or validating set. The performance of each classifier
is then assessed by the misclassification rate (i.e., the percent of misclassified instances
out of the total instances in the validation data) and the computation time.

2.4.2. The receiver operating characteristic curve. The ROC curve, in Figure 2, is a graph-
ical plot which illustrates the performance of a binary classifier system as its discrimination
threshold is varied. It is created by plotting the fraction of true positives out of the total
actual positives (TP = true positive rate) versus the fraction of false positives out of the
total actual negatives (FP = false positive rate), at various threshold settings. TP is also
known as sensitivity (recall), and FP is one minus the specificity or true negative rate
(TN).

                      

                              

                                                          FIGURE 2. The ROC curve

Figure 2. The ROC curve

A particular classifier is represented by a pair of TP and FP in the ROC space. A
perfect classifier will have TP being 100% and FP being 0% [21]. Areas under the ROC
curves are used to evaluate the performance of the classifier. Higher value means better
performance.

2.4.3. Metrics. The metrices such as precision, recall, error rate, kappa statistics, root
mean squared error and F -value were used to measure the performance. Error rate mea-
sures the number of incorrectly classified instances. Kappa statistic (K) is similar to
the correlation coefficient. It measures the agreement or relation between the classifiers.
Root mean squared error (RMSE) is the square root of the variance of the residuals and
measures how far the data are from the model’s predicted values. In statistical analysis
of binary classification, the F -value or F -measure is a measure of a test’s accuracy. It
considers both the precision p and the recall r of the test to compute the score: p is the
number of correct positive results divided by the number of all positive results, and r
is the number of correct positive results divided by the number of positive results that
should have been returned. The F -value can be interpreted as a weighted average of the
precision and recall, where an F -value reaches its best value at 1 and worst at 0. The
traditional F -value is the harmonic mean of precision and recall.
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2.5. Classifier ensemble. A generalized classifier ensemble algorithm is summarized in
the following steps [22].

1) Partition original dataset into n training datasets, TR1, TR2, . . ., TRn.
2) Construct n individual models (M1,M2, . . . ,Mn) with the different training datasets

TR1, TR2, . . ., TRn to obtain n individual classifiers (ensemble members).
3) Select m the de-correlated classifiers from n classifiers using de-correlation maxi-

mization algorithm [23].
4) Using step 3, obtain m classifier output values (misclassification error rates) of an

unknown instance.
5) Transforming output value to reliability degrees of positive class and negative class,

given the imbalance of some datasets.
6) Fuse the multiple classifiers into aggregate output.

3. Experimental Set-up. For simulation, five base classifiers which generate different
models: linear models, density estimation, trees and networks were chosen. Each classifier
uses a different form of parametric learning. The classifiers also come from two diverse
research communities: statistics and machine learning. Single classifiers were constructed
using each method.

To select the appropriate number of ensemble members, the de-correlation maximiza-
tion method by [23] was utilized. The four classification techniques were applied to the
test sample and the cross validation sample.

Classifiers were constructed using a cross-validation method as the sampling method.
The ensemble classification methods were each applied to the training, validation and the
test samples. Classifiers were constructed using the Waikato Environment for Knowledge
Analysis (WEKA) free and open software that uses the JavaTM language [24] and a
2.60GHz CPU microcomputer. The WEKA freeware software is a collection of algorithms
for data mining tasks. All algorithms were implemented in WEKA Release 3.6.9.

The data collected and used is the personal income tax data and the sample consists
of 7 890 tax returns. All statistical tests were conducted using the statistical analysis
software (SAS). Analyses of variance, using the general linear model procedure were used
to examine the main effects and their respective interactions.

4. Experimental Results. The results are summarized in Figures 3-6 in terms of mis-
classification error, computation time and metrics. Rules achieved the highest accuracy
rate, with an error rate of 5.2471%. It is followed by DT with an error rate of 5.7161%,
and in the third place ANN with an error rate of 5.8935%. LgR and NBC have error rates
of 6.5779% and 7.976%, respectively.

The Bagging achieved the highest accuracy with an error rate of 0.0507%, as shown in
Figure 4. It is followed by Adaboost with an error rate of 0.0634%. Vote and Stacking both
have an error rate of 5.6527%. Vote outperformed all ensembles with computation time
of 0.03, as shown in Figure 5, and Bagging is the second best in computation time. The
performances between most of the ensemble classifiers were found to differ significantly
at the 5% level.

The statistical significance of the homogeneous ensemble classifiers is better than that
of heterogeneous ensemble classifiers. This follows from the value of their “Kappa statis-
tic”, 0.9941 and 0.9953, as shown in Figure 6, which indicate the existence of moderate
statistical dependence. Another metric is the “receiver operating characteristic (ROC)
area”. If its value is near 0.5, it indicates the lack of any statistical dependence [5]. The
ROC areas of Vote, Stacking, Adaboost and Bagging are 0.5, 0.5, 1, and 1, respectively.
The homogeneous ensemble classifiers displayed better performance. The heterogeneous
ensemble classifiers both have the area under the curve equal to 0.5. They failed to dis-
tinguish between high risk and low risk but managed to identify the true positives.
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                                         FIGURE 3. Misclassification errors of base classifiers
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Figure 3. Misclassification errors of base classifiers

                                     FIGURE 4. Misclassification error of ensemble classifiers
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Figure 4. Misclassification error of ensemble classifiers
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Figure 5. Computation time of ensemble classifiers

5. Conclusions. It has been found that the combination of multiple classifiers can en-
hance the classification and identification accuracy to a great extent. The ensemble clas-
sifiers outperformed the single classifiers in performance. The homogeneous classifiers, in
return, outperformed the heterogeneous classifiers in performance as well.
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                                    FIGURE 6. The performance in metrics of ensemble classifiers 
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Figure 6. The performance in metrics of ensemble classifiers

Different designs of a classifier provide complementary information about the patterns
to be classified, and these could be integrated to improve the performance. The unsta-
ble nature of the component classifiers (output predictions change due to small changes
in training samples) makes it appropriate for an ensemble. An unstable predictor de-
pends strongly on its training data and exhibits high variance. A stable predictor does
not exhibit high dependency on the training data and has a low variance [12]. Unstable
classifiers are therefore chosen over stable ones for more promising results. [4] maintains
that an ensemble classifier is more accurate if and only if constituent classifiers are ac-
curate and diverse, and this makes the accuracy and diversity of classifiers much more
important. They define an accurate model as the one that has an error rate better than
random guessing, and two models making different errors on new data points are regarded
as diverse. The condition of being diverse is the foundation for the reason the combined
models work better since the errors that are made by individual uncorrelated models can
be removed by combining [25].

There are different approaches to selecting best models for combination into a better
one. None of these approaches is a winner. No single model works for all types of datasets,
also known as the “no free lunch” theorem [26]. Characteristics such as data size, normal-
ity, linearity and correlation do have an impact on the performance of a model [27].

The condition of accuracy is the requirement for every model. The condition of diversity
is the reason why combined models perform better than individual ones as confirmed by
[25]. These are all research-based opinions of different researchers, there is no single winner
here, and everything depends upon the domain and what is going to be done.

Acknowledgment. This work was supported by the University of South Africa, College
of Economic and Management Sciences research department.

REFERENCES

[1] H. Ahn, H. Moon, M. J. Fazzari, N. Lim, J. J. Chen and R. L. Kodell, Classification by ensembles
from random partitions of high-dimensional data, Computational Statistics & Data Analysis, vol.51,
no.12, pp.6166-6179, 2007.



826 G. V. MABE-MADISA

[2] Y. Ren, An integrated intrusion detection system by combining SVM with Adaboost, J. Softw. Eng.
Appl., vol.7, no.12, pp.1031-1038, 2014.

[3] Y. Yamasari, S. M. S. Nugroho, K. Yoshimoto, H. Takahashi and M. H. Purnomo, Expanding
tree-based classifiers using meta-algorithm approach: An application for identifying students’ cog-
nitive level, International Journal of Innovative Computing, Information and Control, vol.15, no.6,
pp.2085-2107, 2019.

[4] L. Hansen and T. Salamon, Neural networks ensembles, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol.12, no.10, pp.993-1001, 1990.

[5] Y. Kim, J. Kim and J. Jongwoo, Convex hull machine for regression and classification, IEEE Con-
ference on Data Mining, pp.243-253, 2002.

[6] H. Zhu, P. A. Beling and G. A. Overstreet, A Bayesian framework for the combination of classifier
outputs, Journal of the Operation Research Society, vol.53, pp.719-727, 2002.

[7] L. Rokach, Taxonomy for characterizing ensemble methods in classification tasks: A review and
annotated bibliography, Computational Statistics & Data Analysis, vol.53, no.12, pp.4046-4072,
https://doi.org/10.1016/j.csda.2009.07.017, 2009.

[8] S. Chen, A. Wiliem, C. Sanderson and B. Lovell, Matching Image Sets via Adaptive Multi
Convex Hull, University of Queensland, https://espace.library.uq.edu.au/data/UQ 330285/UQ
330285 OA.pdf, 2014.

[9] Y. Gao, J. Jack, M. D. Jiang and A. Sprecher, Support Vector Machine Based Decision Tree to Classi-
fy Voice Pathologies Using High-Speed Videoendoscopy, https://www.semanti-cscholar.org, Accessed
in July 2021.

[10] Z. Liu, H. Shi, T. Wang and W. Li, Software defect prediction based on classifier ensembles, Journal
of Information and Computational Science, vol.8, no.16, pp.4241-4254, 2011.

[11] G. Boetticher, T. Menzies and T. Ostrand, Promise Repository of Empirical Software Engineering
Data, Department of Computer Science, West Virginia University, http://promisedata.org/reposi-
tory, 2007.

[12] L. Breiman, Bagging predictors, Machine Learning, vol.24, no.2, pp.123-140, 1996.
[13] Y. Yamasari, S. M. S. Nugroho, D. F. Suyatno and M. H. Purnomo, Meta-algorithm adaptive

boosting to improve the classification performance of students’ achievement, J. Nas. Tek. Elektrodan
Teknol. Inf., vol.6, no.3, 2017.

[14] A. Ghorbani and K. Owrangh, Stacked generalization in neural networks: Generalization on
statistically neural problems, International Joint Conference on Neural Networks, 2001, https://
ieeexplore.ieee.org/document/938420, Accessed in August 2021.

[15] T. K. Ho, Random decision forests, Proc. of the 3rd Int’l Conf. on Document Analysis and Recogni-
tion, pp.278-282, 1995.

[16] T. Dietterich, Ensemble methods in machine learning, Proc. of the 1st International Workshop on
Multiple Classifier Systems, pp.1-5, 2000.

[17] L. Breiman, Arcing classifiers, The Annals of Statistics, vol.26, no.3, pp.49-64, 1998.
[18] T. T. Khuat and M. Le, Evaluation of sampling-based ensembles of classifiers on imbalanced data for

software defect prediction problems, SN Computer Science, vol.1, no.108, https://doi.org/10.1007/
s42979-020-0119-4, 2020.

[19] P. Molale, S. Seeletse and B. Twala, Fingerprint prediction using classifier ensembles, The 53rd
Annual Conference of SASA, 2011, http://hdl.handle.net/10204/5379, Accessed in June 2021.

[20] H. Zhu, P. A. Beling and G. A. Overstreet, A study in the combination of two consumer credit
scores, Journal of the Operation Research Society, vol.52, pp.2543-2559, 2001.

[21] M. Niranjan, R. W. Prager and M. J. J. Scott, Realizable classifiers: Improving operating perfor-
mance on variable cost problems, The 9th British Machine Vision Conference, vol.1, pp.304-315,
1998.

[22] B. Twala, Multiple classifier application to credit risk assessment, Expert Systems and Applications,
vol.37, pp.3326-3336, 2010.

[23] I. Jolliffe, Principal Component Analysis, Wiley StatsRef: Statistics Reference Online, 2014, https://
doi.org/10.1002/9781118445112.stat06472, Accessed in July 2021.

[24] E. Frank, I. H. Witten and C. Pal, Data Mining, Practical Machine Learning Tools and Techniques,
4th Edition, Hamilton, Morgan Kaufmann, 2016.

[25] T. Dietterich, Machine learning research: Four current directions, AI Magazine, vol.18, no.4, pp.97-
136, 1998.

[26] G. Macready, G. William and H. Wolpert, No free lunch theorems for optimization, Transactions on
Evolutionary Computation, vol.1, no.1, pp.67-82, 1997.

[27] Y. Kiang, A comparative assessment of classification methods, Decision Support Systems, vol.35,
pp.441-454, 2003.


