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Abstract. In the basic vehicle routing problem (VRP), a customer’s demand should be
satisfied by only one vehicle. On the other hand, split delivery vehicle routing problem
(SDVRP) allows two or more vehicles to serve each customer. SDVRP has more feasi-
ble solutions than basic VRP, making it more difficult to enumerate feasible solutions.
Column generation is a well-known method for VRP, and we can also efficiently solve
SDVRP using Dantzig-Wolf decomposition. For integer programming, branch-and-price,
which is a combination of column generation and branch-and-bound, is effective. In this
research, we adopt branch-and-price for the solution method, and discuss the model and
the solution process as an exact solution method for SDVRP. In addition, we compare the
results of experiments for two solution methods and evaluate their relative performance.
Keywords: Integer programming, Vehicle routing problem, Column generation, Split
delivery, Labeling algorithm

1. Introduction. Many organizations, especially transportation companies, must move
their products or services to designated places to meet customer demand. Since trans-
portation costs are often large, it is important to create an efficient operations schedule.
However, the schedule must satisfy certain constraints, such as the condition that delivery
vehicles have limited loading capacity. These constraints make it difficult to determine
an optimal plan. This problem is known as the vehicle routing problem (VRP). While
basic VRP assumes that the demand of a certain customer should be satisfied by only
one vehicle, split delivery vehicle routing problem (SDVRP) allows a customer demand
to be served by two or more vehicles.

VRP is often solved by the cutting plane method, or branch-and-cut, as is also SD-VRP
[1, 2]. These researchers focus on how cuts can be added effectively, but it is very difficult
to define the cut addition scheme, for reasons mainly related to subtour elimination con-
straints. The purpose of this research is to develop a labeling algorithm. Column genera-
tion is also a well-known method for VRP, because it simplifies the model. Dantzig-Wolfe
decomposition reduces VRP or SDVRP to a simplex master problem, and a subproblem
which can be considered as the shortest path problem with resource constraints. We can
obtain the solution of a subproblem without subtour by applying dynamic programming.
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Figure 1. Framework of branch-and-price

Actually, many researchers using column generation have been successful, for example [3].
Branch-and-price, the combination of column generation and branch-and-bound, is effec-
tive for integer programming. The framework of branch-and-price is shown in Figure 1.
In the present research, we have used the formulation and the branch-and-price algorithm
for SDVRP, as shown in [4, 5]. Desaulniers et al. [6] provided a survey overview in integer
programming column generation and its many applications.
The organization of this paper is as follows. Section 1 introduces SDVRP, and Section

2 shows the formulation and solution algorithm we develop. Section 3 shows the results
of the numerical experiments, and the final section gives the conclusions.

2. Formulation of SDVRP.

2.1. Master problem. All vehicles leave from the start depot, visit a set of customers
and satisfy each customer’s demand. Finally, the vehicles arrive at the end depot. In
this process, split deliveries are allowed. “Route” represents the path traversed from the
start depot to the end depot. A sufficient number of vehicles is available, having the
same limited capacity. We assume an arc cost which equals the distance and satisfies the
triangle inequality. “Delivery pattern” distinguishes patterns on the same route by the
amount of product that the vehicles deliver to each customer.
Sets

N Set of customers, {1, . . . , n}
P Set of points, including N , the start and the end depot {0, n+ 1}
A Set of arcs
R Set of routes, combinations of arcs from the start depot to the end depot
Wr Set of delivery patterns on a route r

Parameters

cr Cost of route r
Q Capacity of vehicle
di Demand of customer i
δirw Delivery quantity for customer i by delivery pattern w on route r
bijr If route r contains arc (i, j) then 1, otherwise 0
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Decision Variables

θrw The number of vehicles executing delivery pattern w of route r
θr The number of vehicles on route r
yij The number of vehicles passing on arc (i, j)
li The number of vehicles leaving customer i
H The number of vehicles used in this model

In addition, some variables have upper and lower bounds. Symbols H, H, li, li, yij, yij
define the bounds of respective variables. If the costs of arcs satisfy triangle inequality,
Dror et al. [2] proved that yij ≤ 1, ∀i, j ∈ N is a valid inequality. Also, H =

⌊∑
i∈N di/Q

⌋
is a valid equality, while H = 2

⌊∑
i∈N di/Q

⌋
and li ≥ 1, ∀i ∈ N are valid inequalities.

The following is the formulation to SDVRP by column expression. The restricted master
problem (RMP) is formulated as follows.

min
∑
r∈R

∑
w∈Wr

crθrw (1)∑
r∈R

∑
w∈Wr

δirwθrw ≥ di, ∀i ∈ N (2)∑
r∈R

∑
w∈Wr

(bijr + bjir)θrw ≤ 1, ∀i, j ∈ N : i < j (3)∑
r∈R\{0}

∑
w∈Wr

θrw = H (4)

∑
j∈P

∑
r∈R

∑
w∈Wr

bijrθrw = li, ∀i ∈ N (5)

∑
r∈R

∑
w∈Wr

bijrθrw = yij, ∀(i, j) ∈ A (6)

H ≤ H ≤ H (7)

li ≤ li ≤ li, ∀i ∈ N (8)

y
ij
≤ yij ≤ yij, ∀(i, j) ∈ A (9)∑

w∈Wr

θrw = θr, ∀r ∈ R (10)

θrw ≥ 0, ∀r ∈ R, ∀w ∈ Wr (11)

θr, integer, ∀r ∈ R (12)

H, integer (13)

li, integer, ∀i ∈ N (14)

yij, integer, ∀(i, j) ∈ A (15)

Objective function (1) minimizes total cost. Constraint (2) represents demand satisfac-
tion. Inequality (3) is cutting plane, as shown in [2]. Equalities (4)-(6) define variables
H, li, yij by θrw, and constraints (7)-(9) are the bounds. Constraint (10) indicates the
link between θrw and θr.

2.2. Subproblem. Dual variables πi, βij, η, γi, αij correspond to constraints (2)-(6).
By solving the linear relaxation of RMP, we can obtain dual variables which define the
subproblem (SP). SP minimizes the objective function that represents reduced cost, and
the constraints that must be satisfied for each vehicle. SP can be solved as the shortest
path problem of the graph as shown in Figure 2. SP is defined to find a new column
corresponding to the new schedule.
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Figure 2. Definition of the shortest path problem

Parameters

cij Cost of arc (i, j)
c̄ij = cij − βij − γi − αij

d̄i = min(di, Q), possible quantity of delivery for customer i
Decision Variables

xij If the vehicle passes on arc (i, j) then 1, otherwise 0
δi Delivery quantity for customer i by the vehicle

c∗ = min
∑

(i,j)∈A

c̄ijxij −
∑
i∈N

δiπi − η (16)

∑
j∈P\{0}

x0j = 1 (17)

∑
j∈P

xij −
∑
j∈P

xji = 0, ∀i ∈ N (18)

∑
j∈P\{n+1}

xj,n+1 = 1 (19)

∑
i∈S

∑
j∈S\{i}

xij ≤ |S| − 1, S ⊆ N, |S| ≥ 2 (20)

∑
i∈N

δi ≤ Q (21)∑
j∈P

xij ≤ δi ≤ d̄i
∑
j∈P

xij, ∀i ∈ N (22)

δi, integer, ∀i ∈ N (23)

xij ∈ {0, 1}, ∀(i, j) ∈ A (24)

In SP, we minimize the reduced cost for individual vehicles. Constraints (17)-(19) repre-
sent flow constraints. Inequalitiy (20) is called subtour elimination constraint. No vehicle
is able to load product exceeding vehicle capacity (21). The left hand inequality of (22)
eliminates the patterns that include a customer with zero delivery. The right hand in-
equality states that the delivery to each customer exceeds neither customer demand nor
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vehicle capacity. In addition to these constraints, each vehicle should deliver either 1
or d̄i quantity, with at most one exception in which a customer is served quantity q,
(1 < q < d̄i). Archetti et al. [4] defined this as extreme delivery. Extreme deliveries
represent extreme points of the problem. [5] showed that any feasible solution of SDVRP
is given as a combination of extreme deliveries.

If the reduced cost is non-negative, the relaxed RMP is optimal. This provides a lower
bound of the problem solution. The optimal linear relaxed RMP value z∗RLMP and the
lower bound of linear relaxed problem z∗RMP is related with minimum reduced cost c∗ as

z∗RMP = z∗RLMP +Hc∗ (25)

We can regard SP as a shortest path problem with resource constraints. Therefore, we
can solve SP by dynamic programming. Archetti et al. [4] solved SP in which a route
that has cycles is also allowed. However, the optimal solution does not have routes with
cycles, so generating such a route in SP cannot improve the lower bound efficiently. In
this paper, we do not allow routes to include cycles, and we present a new method to
generate a route.

We define a graph G = (V,E). The set of vertices V includes the start depot vertex v00,

the end depot vertex vn+1
0 and vertices

{
vi1, v

i
2, . . . , v

i
d̄i

}
for each customer. If a vehicle

delivers q quantity to customer i, we regard that as the case that the vehicle visits vertex
viq. Each edge of G has the weights based on (16). We set labels on the vertices. A label is
expressed as (ν, λ, σ, C). The first element ν denotes the number of customers the vehicle
has visited. The second element λ represents the quantity that the vehicle has delivered.
The third element σ indicates whether the vehicle has already delivered 2 ≤ q ≤ d̄i − 1
to customer i. The last element C is the current path cost corresponding to (16). In
addition to these, a label has the list of customers already visited in the path. The label
of v00 is initialized as (0, 0, 0, 0). At the step of extending a label of vip to vjq , the status is
updated as follows:

ν := ν + 1, λ := λ+ q, σ := if (2 ≤ q ≤ d̄i − 1) then σ + 1, C := C + c̄ij − qπi

We can calculate the reduced cost rc from a partial path cost C of a label on the end
depot by c∗ = C − η. If a label (ν, λ, σ, C) does not satisfy the constraints ν ≤ n, λ ≤ Q,
σ ≤ 1, the label should be deleted.

We have developed a new rule of dominating a label. We solve SP at first, by adopting
a simplified dominating rule. Among vertices of the same customer, the label (ν, λ, σ, C)
dominates another label (ν ′, λ′, σ′, C ′) if ν ≤ ν ′, λ ≤ λ′, σ ≤ σ′, C ≤ C ′. This simplified
rule provides a heuristic solution. If no routes that have negative reduced cost are gen-
erated in this rule, the strict rule is applied. In the strict rule, we consider about a label
that has the set of visited customers S and another label that has the set S ′. Only if
these sets satisfy the constraints S ′ ⊆ S, the former label can dominate the latter label.

2.3. Branching. If RMP solution violates integer constraints, branching is conducted.
Since there are integer constraints on H, li, yij, we branch these variables. First, if H̃ is

fractional, two subproblems are generated, of which one is updated as H =
⌊
H̃
⌋
, and the

other as H =
⌈
H̃
⌉
. Second, li is considered. In the same way as above, a subproblem has

the constraint li =
⌊
l̃i

⌋
or li =

⌈
l̃i

⌉
. At last, we branch by yij to yij = ⌊ỹij⌋ or yij = ⌈ỹij⌉.

When all integer constraints are satisfied, a feasible solution is obtained. If this feasible
objective function value is less than the current optimal value, it defines the lower bound
of the problem solution. In this research, we selected the branching node by best-first
searching. At each iteration of column generation on a tree node, the lower bound is
provided by (25) or the optimal solution of linear relaxed RMP.
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3. Numerical Experiments. We ran the algorithm on HP Z840 Workstation, Windows
10 Pro (64bit), CPU: Intel Xeon E5-2620 v3 2.4GHz, RAM: 16.0GB, using AMPL and
CPLEX 12.7.1.0.
The coordinates of n customers and a depot are generated randomly on a two dimen-

sional map. The demands follow uniform distribution, in which the minimum is 10 and
the maximum is 50. We assumed the capacity Q = 40. Table 1 shows the results. The
calculation time represents the sum of AMPL system time and the executing time of
CPLEX.

Table 1. Results of the experiments

Column generation heuristics Branch-and-price
n obj. gap time column node obj. gap time column node
5 425 0.0 0.125 13 0 425 0.0 0.125 13 1
10 1082 15.5 0.360 25 6 937 0.0 37.215 139 371
15 1078 4.6 2.771 56 13 1031 0.0 29.781 111 155
20 1728 83.9 7.145 76 103 940 0.0 219.707 293 917
25 2596 26.9 5.633 69 378 2045 0.0 621.282 501 1555
30 2247 7.4 23.829 129 519 2092 0.0 873.049 792 3349

Column generation heuristics continue to generate columns, and RMP is solved when
new columns cannot be generated. Only an approximate solution is obtained by column
generation heuristics; on the other hand, the exact solution can be detected by branch-
and-price. Branch-and-price takes longer calculation time. In some cases, the solution of
column generation heuristics can be equal to the exact solution. However, branch-and-
price may be better because it is guaranteed to get exact integer solution.

4. Concluding Remarks. An exact solution algorithm to solve SDVRP has been de-
veloped. During test runs, it was found that branch-and-price and the labeling algorithm
required long calculation time. Therefore, we need to improve the SP algorithm so as to
reduce its calculation time, such as by using search heuristics. We also plan to extend the
model to a time-windows model and to a multiple start or end depots model.
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