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Abstract. This paper deals with the output feedback sampled-data control problem for
networked systems described by nonstrict-feedback nonlinear systems under aperiodic de-
nial-of-service (DoS) attacks. First, a novel switched observer is developed in the presence
of DoS attacks. Second, a new switched system model is established by considering the
effect of the periodic sampling and DoS attacks simultaneously. By virtue of this new
model combined with a piecewise Lyapunov-Krasovskii functional method, the sufficient
conditions are derived to guarantee exponential stability of the resulting switched system.
Third, criteria for designing a desired observer-based sampled-data controller are provided
and expressed in terms of a set of linear matrix inequalities. Finally, an illustrative
example is presented to verify the efficiency of the developed control method.
Keywords: Networked nonstrict-feedback nonlinear system, Denial-of-service attacks,
Sampled-data control

1. Introduction. In recent years, the security control issues of networked control sys-
tems (NCSs) have received extensive attention [1, 2, 3, 4, 5]. The communication network
between physical devices is vulnerable to deliberate attack, which makes the system in-
termittently in an open loop state and then causes the system to be paralyzed. Moreover,
some attackers have caused serious accidents to networked systems, such as oil pipeline
explosions and power system failures [6]. In particular, denial-of-service (DoS) attacks,
which send a large amount of data to network communication channels, slow down the
network response and block signal transmission, and ultimately lead to the paralysis of the
communication network, posing a great security risk to NCSs [7]. Therefore, considering
the impact of network attacks, it is of great practical significance to study the security
control issues of NCSs.

Compared with other types of attacks, such as deception attacks and replay attacks,
the DoS attacks are easy to initiate through hackers [8]. How to design defense strategies
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to resist the impact of DoS attacks has attracted extensive attention and has achieved
some fruitful results [9, 10, 11, 12]. A sampled-data control scheme was developed in [9]
to preserve the NCS to be stable under DoS attacks which are constrained by frequency
and duration in [9]. The work in [10] generalized the results in [9] to multiple transmis-
sion channels under DoS attacks, and used linear matrix inequality techniques to analyze
system stability. Considering the impact of DoS attacks and constrains on network re-
sources, the resilient event-triggered control problem for stochastic NCSs was investigated
in [11]. The exponential stabilization and L2-gain analysis problems of uncertain NCSs
with aperiodic DoS attacks, time delays and external interferences were reported by using
a resilient dynamic event-triggered control strategy [12].
With the rapid development of wireless digital communication, the control input com-

mands of the practical system usually adopt a sampled-data control approach. In par-
ticular, the control signals of NCSs are generally transmitted through network media.
The signal transmitted by the sensor and/or the controller through the network is only a
discrete digital signal, i.e., a sampled-data signal. This control method has been widely
discussed in the existing results [13, 14, 15, 16]. The discretized output feedback controller
was designed to globally stabilize system by tuning the scaling gain and the maximum
allowable sampling period [13]. The finite-time fuzzy switching control problem for the
flexible spacecraft under stochastic failures and aperiodic sampling was presented in [14].
A nonlinear sampled-data extended state observer-based active disturbance rejection con-
trol with consideration of the actuator saturation effect was investigated for a pneumatic
muscle actuator system [15]. A decentralized output feedback sampled-data control strat-
egy was proposed to stabilize nonstrict-feedback large-scale nonlinear systems under DoS
attacks via a Lyapunov approach [16].
Although the problem of sampled-data control of nonlinear systems under DoS attacks

has been presented in [16], the existing methods introduce a large number of mathematical
derivations and constraints. This motivates us to find a novel and simple method to solve
this problem. The following are the main contributions of this article.

• A new switched system approach is presented, by which the nonlinear NCS, DoS
attacks, and sampled-data control strategy are integrated into a unified framework.
By using a piecewise Lyapunov-Krasovskii functional method, some new stability
criteria are derived to guarantee the resulting switched system is exponentially stable.

• A solution for jointly designing the observer gain, and the control gain is provided.

The rest of the paper is arranged as follows. In Section 2, the system model, the
observer and the control objective are formulated. In Section 3, main results of stability
analysis and the controller and observer design are derived. Section 4 shows a simulation
study for verification. Finally, the conclusion is given in Section 5.
Notation: Let Rn×m be the sets of all n×m real matrices. The notion T > 0 (T ≥ 0)

means the matrix T is real symmetric and positive definite (semidefinite). The sign He(T )
denotes T + T T . The symbol ∗ represents a symmetric term induced by symmetric block
matrix. diag{. . .} stands for a block-diagonal.

2. Problem Statement and Preliminaries.

2.1. System description. Consider a class of networked nonstrict-feedback nonlinear
systems:

ẋk(t) = xk+1(t) + fk(x(t)), k = 1, . . . , n− 1,

ẋn(t) = u(t) + fn(x(t)),

y(t) = x1(t), (1)

where xk(t) ∈ R are the system state and x(t) = [x1(t), . . . , xn(t)]
T , u(t) ∈ R is the control

input, y(t) ∈ R is the system output, and fk(x) ∈ R is the known continuous function.
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Assumption 2.1. The nonlinear function fk(x(t)), k = 1, . . . , n, satisfies

|fk(x(t))| ≤ αk

k∑
i=1

|xi(t)|,

where αk ≥ 0 are known constants.

Let

ζk =
xj

µk−1
, v =

u

µn
, (2)

where µ ≥ 1 is a scalar. Then, system (1) can be rewritten as

ζ̇k(t) = µζk+1(t) + gk(ζ(t)), k = 1, . . . , n− 1,

ζ̇n(t) = µv(t) + gn(ζ(t)),

y(t) = ζ1(t), (3)

where ζ(t) = [ζ1(t), . . . , ζn(t)]
T and gk(ζ(t)) =

fk(x(t))
µk−1 . With the help of (2) and Assump-

tion 2.1, we have

|gk(ζ(t))| ≤ αk

k∑
i=1

|ζi(t)|. (4)

It follows from (3) that

ζ̇(t) = µAζ(t) + µBv(t) +G(ζ(t)),

y(t) = Cζ(t), (5)

where

A =


0 1

. . . . . .
0 1

0

 , B =


0
...
0
1

 , C =


1
...
0
0


T

, G(ζ(t)) =


G1(ζ(t))

...
Gn−1(ζ(t))

Gn(ζ(t))

 .

2.2. DoS attacks. Since the signal is transmitted through the network medium, network
attacks may occur to interrupt the signal transmission. Here, the specific attack type we
consider is DoS attacks. In order to achieve the main results of this paper, the following
assumptions are required for the constraints of attack frequency and duration.

Assumption 2.2 (Attack Frequency). For t ≥ t1 ≥ 0, there is a scalar T0 > 0, such that

N(t, t1) ≤
t− t1
T0

.

Assumption 2.3 (Attack Duration). For t ≥ t1 ≥ 0, there is a scalar T1 > 1, such that

Π(t, t1) ≤
t− t1
T1

.

2.3. Observer-based control design. Let h be the sampling period and tj = jh, j =
0, 1, . . . , be the sampling instants. Then, the output signal of the sensor can be expressed
as

y(t) = y(tj), t ∈ [tj, tj+1).

Let the intervals D1,j = [dj, dj + lj) and D2,n = [dj + lj, dj+1), j = 0, 1, . . ., with d0 = 0
be the non-attacking interval and the attacking interval, respectively. In addition, we
assume that there exist integers κj and κ̄j, such that dj = κjh and lj = κ̄jh. The subin-

tervals on D1,j can be expressed as D1,j = ∪i∗j
i=1Ω

i
j, where Ωi

j = [dj + (i− 1)h, dj + ih)
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with i∗j =
dj+1−dj

h
. Affected by DoS attacks, the actual expression of the observer’s input

is

ȳσ(t)(t) =

{
y(t), t ∈ D1,j, σ(t) = 1,

0, t ∈ D2,j, σ(t) = 0.
(6)

According to (5) and (6), we can design the following state observer:

˙̂
ζk(t) = µζ̂k+1(t)− µL

σ(t)
j

(
ζ1(t)− ȳσ(t)(tk)

)
, k = 1, . . . , n− 1,

˙̂
ζn(t) = µv(t)− µLσ(t)

n

(
ζ1(t)− ȳσ(t)(tk)

)
, (7)

where the scalar L
σ(t)
j is to be designed. Note that x̂k(t) = µj−1ζ̂k(t). For simplify, we

rewrite (7) as

˙̂
ζ(t) = µA

σ(t)
0 ζ̂(t) + µBv(t) + µσ(t)Lσ(t)Cζ(tk), (8)

where A
σ(t)
0 = A − Lσ(t)C and Lσ(t) =

[
L
σ(t)T

1 , . . . , L
σ(t)T

n

]T
. Under DoS attacks, the

sampling-data controller is constructed as

v(t) = vσ(t)(t) =

{
−Kζ̂(tk), t ∈ [tk, tk+1), σ(t) = 1,

0, t ∈ [tk, tk+1), σ(t) = 0,
(9)

where K is a gain matrix to be designed.

Let ξ(t) =
[
ζT (t) ζ̂T (t)

]T
. Combining (5), (8), and (9), we get

ξ̇(t) = Ā
σ(t)
0 ξ(t) + Ā

σ(t)
1 ξ(t− τ(t)) + Ḡ(ζ(t)), (10)

where Ā
σ(t)
0 = µdiag

{
A,A

σ(t)
0

}
, Ā

σ(t)
1 = µ

[
σ(t)L̄σ(t)C − B̄Kσ(t)

]
, L̄σ(t) =

[
0 Lσ(t)

]T
,

B̄ =
[
BT BT

]T
, Ḡ(ζ(t)) =

[
GT (ζ(t)) 0

]T
, K1 = K, K0 = 0, and τ(t) = t − tj. Assume

that τ(t) < h.
The objective of this work is to design an observer-based sampled-data controller, such

that system (10) under DoS attacks is exponentially stable.

3. Main Results.

Theorem 3.1. Let the gain matrices K, L0 and L1 be known. For given scalars µ ≥ 1,
δl > 0, βl > 0, T0 > 0, T1 > 1, λl > 1, l = 0, 1, and h > 0, satisfying

ϱ =: 2β1 − 2(β1 + β0)

(
1

T1

+
h

T0

)
− ln(λ0λ1)

T0

> 0, (11)

if there exist symmetric matrices Pl > 0, and Ql > 0 such that

P1 ≤ λ0P0, P0 ≤ λ1e
2(β1+β0)hP1, (12)

Γ11 Γ12 P1 hĀ1T

0 P1

∗ Γ13 0 hĀ1T

1 P1

∗ ∗ −I hP1

∗ ∗ ∗ Γ14

 < 0, (13)


Γ01 R0 P0 hĀ0T

0 P0

∗ Γ02 0 0

∗ ∗ −I hP0

∗ ∗ ∗ Γ04

 < 0, (14)

where

Γ11 = He
{
P1Ā

1
0

}
+ 2β1P1 + dI − e−2β1hR1,
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Γ12 = P1Ā
1
1 + e−2β1hR1, Γ13 = −e−2β1h(Q1 +R1),

Γ14 = δ21R1 − 2δ1P1, Γ04 = δ20R0 − 2δ0P0,

Γ01 = He
{
P0Ā

0
0

}
− 2β0P0 −R0, Γ02 = −Q0 −R0,

then system (10) is exponentially stable.

Proof: Construct a Lyapunov-Krasovskii functional of the following form, for ∀t ∈ Ωi
j:

Vσ(t)(t) = ξT (t)Pσ(t)ξ(t) + e(−1)σ(t)2βσ(t)(t−tj−(i−1)h) (τ̄ − τ(t)) ξT (t− τ(t))Qσ(t)ξ(t− τ(t))

+h

∫ 0

−τ(t)

∫ t

t+s

e(−1)σ(t)2βσ(t)(t−θ)ξ̇T (θ)Rσ(t)ξ̇(θ)dθds.

When σ(t) = 1, the time derivative of V1(t) is

V̇1(t) + 2β1V1(t) ≤ ξT (t)
[
P1Ā

1
0 + Ā1T

0 P1 + 2β1P1

]
ξ(t) + 2ξT (t)P1Ā

1
1ξ(t− τ(t))

+ 2ξT (t)P1Ḡ(ζ(t))− e−2β1hxT (t− τ(t))Q1x(t− τ(t))

+h2ξ̇T (t)R1ξ̇(t)− he−2β1h

∫ t

t−τ(t)

ξ̇T (θ)R1ξ̇(θ)dθ. (15)

By virtue of Jenson’s inequality, the term
∫ t

t−τ(t)
ξ̇T (θ)Rσ(t)ξ̇(θ)dθ can be evaluated as

h

∫ t

t−τ(t)

ξ̇T (θ)Rσ(t)ξ̇(θ)dθ ≤ −(ξ(t)− ξ(t− τ(t)))TR(ξ(t)− ξ(t− τ(t))). (16)

By using (4), we have

|gk(ζ(t))|2 ≤

(
αk

k∑
i=1

|ζi(t)|

)2

≤ kα2
k

k∑
i=1

|ζi(t)|2,

from which it follows that∥∥Ḡ(ζ(t))
∥∥2 =

n∑
k=1

|gk(ζ(t))|2 ≤ |ζ1(t)|2
n∑

k=1

kα2
k + |ζ2(t)|2

n∑
k=2

kα2
k + · · ·+ |ζn(t)|2

n∑
k=n

kα2
k

≤
n∑

k=1

kα2
k

n∑
k=1

|ζk(t)|2 = d||ζ(t)||2, (17)

where d =
∑n

k=1 kα
2
k.

Due to
(
P1R

− 1
2

1 − δ1R
1
2

)T (
P1R

− 1
2

1 − δ1R
1
2

)
≥ 0, where δ1 > 0 is a constant, we have

−P1R
−1
1 P1 ≤ δ21R1 − 2δP1. (18)

Then, integrating (15)-(18) and using (13), we have

V̇1(t) + 2β1V1(t) < 0, t ∈ D1,j. (19)

When σ(t) = 0, the time derivative of V0(t) is

V̇0(t)− 2β0V0(t) ≤ ξT (t)
[
P0Ā

0
0 + Ā0T

0 P0 − 2β0P0

]
ξ(t) + 2ξT (t)P0Ḡ(ζ(t))

−xT (t− τ(t))Q0x(t− τ(t)) + h2ξ̇T (t)R0ξ̇(t)

−h

∫ t

t−τ(t)

ξ̇T (θ)R0ξ̇(θ)dθ.

In view of σ(t) = 1, by using (14), one can obtain

V̇0(t)− 2β0V0(t) < 0, t ∈ D2,j. (20)
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Let

V (t) =

{
V1(t), t ∈ D1,j,

V0(t), t ∈ D2,j.

Then, it is clear that

V̇ (t) =

{
e−2α1(t−dj)V1(dj), t ∈ D1,j,

e2α0(t−dj−lj)V0(dj + lj), t ∈ D2,j.

The remaining proofs can be completed with the help of [11]. Therefore, the details are
omitted.
Based on the result of Theorem 3.1, we give a sufficient condition of stability for system

(10) and solve the control gain and observation gains.

Theorem 3.2. For given scalars µ > 1, ρ > 0, δl, βl > 0, Tl, λl > 1, l = 0, 1, and
h > 0, satisfying (11), if there exists a constant ϕ > 0, and symmetric matrices Pl =
diag {Pl1, Pl2} > 0, Ql > 0, Xl and Y , such that[

−ϕI (P11B −BY )T

∗ −I

]
< 0 (21)

P1 ≤ λ0P0, P0 ≤ λ1e
2β1hP1, (22)

Γ̄11 Γ̄12 P1 hAT
1

∗ Γ13 0 hAT
2

∗ ∗ −I hP1

∗ ∗ ∗ Γ14

 < 0, (23)


Γ̄01 R0 P0 hAT

0

∗ Γ02 0 0

∗ ∗ −I hP T
0

∗ ∗ ∗ Γ04

 < 0, (24)

where

P12 = ρP11, A1 = diag{P11A,P12A−X1C},
Γ̄11 = µHe{A1}+ 2β1P1 + dI − e−2β1hR1,

Γ̄12 = µA2 + e−2β1hR1, A2 =

[
0 −BK̄

ρX1C −ρBK̄

]
,

A0 = diag{P01A,P02A−X0C},
Γ̄01 = µHe{A0}+ 2β1P1 − 2β0P0 −R0,

then system (10) is exponentially stable. Furthermore, the observer gains and controller
gain are given by

L1 = P−1
12 X1, L0 = P−1

02 X2, and K = Y −1K̄.

Proof: From system (5), we know that B is full column rank. Then, these exists a ma-
trix Y such that P11B = BY , which is equivalent to trace

{
(P11B −BY )T (P11B −BY )

}
=

0. By using Schur complement, this condition can be transformed into an optimization
problem (21). The proof is completed.

Remark 3.1. In contrast to [16], the main advantages of this paper are as follows: (I)
we consider the scenario that DoS jamming signals simultaneously affect both forward and
feedback channels, which may be more practical and (II) a new sampled-data controller is
designed to guarantee that the underlying system under DoS attacks is exponentially sta-
ble. The observer and observer-based controller design results are expressed by the feasible
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solutions of the obtained LMIs, which can be solved by the standard LMI Toolbox. This
method is simpler and easier to be implemented.

4. A Numerical Example. Consider the second-order nonlinear system{
ẋ1(t) = x2(t)− 0.1x1(t) sin (x

2
2(t)) ,

ẋ2(t) = u(t)− 0.1x2(t) cos (x
2
1(t)) .

(25)

Choose h = 0.01, µ = 1.1, ρ = 2, λ0 = λ1 = 1.01, T0 = 2, T1 = 3, β0 = 0.8, β1 = 0.5,
ϕ = 0.1, and δ0 = δ1 = 0.1. By performing simple calculations, we get d = 0.12 and
ϱ = 0.1104, which means that (11) holds. Then, by solving LMIs (21)-(24), we obtain

L1 =
[
1.0735 0.2082

]T
, L0 =

[
0.9970 0.8356

]T
, and K =

[
0.3301 2.6587

]
.

The following initial conditions are chosen: x(0) =
[
1 2

]T
, and ξ̂(0) =

[
1 0

]T
. The

state and control signals of system (25) are shown in Figures 1 and 2 from which we can
observe that the effectiveness of the proposed method can be illustrated even if the system
suffers from DoS attacks.
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Figure 1. The states of system (25) under DoS attacks
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Figure 2. The control input of system (25) under DoS attacks
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5. Conclusions. This paper has investigated sample-data control for networked non-
strict-feedback nonlinear systems under aperiodic DoS jamming attacks. By using the
intermittent output sampling information of the system, an observer and a controller
that depend on the attack mode are designed. Sufficient conditions are obtained to ensure
the investigated system under DoS jamming attacks to be exponentially stable. Finally, a
numbercal example has been given to illustrate the effectiveness of the proposed method.
Future study direction is to extend the presented control scheme of this article to large-
scale networked systems.
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