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Abstract. When the system characteristics vary with time, the time-varying models
are required to be promptly identified from the observation data. In the recursive algo-
rithms based on the parameter approximation of cosine series (RCS), the time-varying
parameters are approximated by cosine series (CS), and the model parameter estimation
becomes estimation of CS coefficients. However, Gibbs effect, which occurs at the dis-
continuous points, causes parameter fluctuation in CS approximation, and deteriorates
the estimation accuracy of RCS. In order to improve the identification performance, a
novel approach to reducing the influence of Gibbs effect is investigated in this paper.
Detection of abrupt variation points through a soft threshold implemented by neural net-
work is introduced into the recursive identification algorithm, the CS approximation is
compensated at the detected abrupt variation points to reduce the estimate fluctuation,
and then the compensated approximation leads to better identification performance for
the time-varying systems with rapid changing. The implementation and effectiveness of
the proposed algorithm are demonstrated by numerical simulation examples.
Keywords: Cosine series, Gibbs effect, Time-varying system, Recursive identification

1. Introduction. Due to aging of components, variation of environment, system fault or
operation malfunction, the dynamic characteristics of a physical system often vary with
time. Such examples can be found in industrial processes whose manipulation depends on
the operating region [1, 2], the rapidly fading communication channels in remote sensing or
mobile communication systems [3], the robotic manipulator and car steering in automatic
driving [4], network with time-varying delays [5], system monitoring [6, 7], fault detection
and diagnosis [8, 9], etc. When the influence of dynamics variation on the operating
performance cannot be ignored, the models of dynamic characteristics must be time-
varying and should be identified in real time through adaptive algorithms.

Several categories of identification methods for time-varying systems have been devel-
oped. 1) The linear parameter varying (LPV) model detects the variation information
from some special measurable variables that determine the process characteristics [10].
2) The segmentation methods separate a time-varying model into several local models
by segmenting the observation data with respect to the large variation [11, 12]. 3) Some
adaptive algorithms such as the recursive least squares (RLS) with a forgetting factor [13],
the least mean square (LMS) or the normalized least mean square (NLMS) algorithms
[14, 15], the affine projection (AP) algorithm and block orthogonal projection (BOP) [16],
Kalman filter, wavelets are used to track the varying dynamics [17]. 4) The explicit ap-
proximation of the parameter variation is used for identification through orthogonal basis
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series such as the trigonometric or Legendre functions [18, 19, 20]. It helps to approximate
the dynamics at an arbitrary rate if the series have sufficiently high degree; consequent-
ly, the approximation commonly has better tracking performance than the conventional
adaptive algorithms or the segmentation approaches for the rapid time-varying systems
[21].
In practical applications, too high degree cannot be chosen due to the influence of noise

and computational complexity. On the other hand, in the low degree of approximation,
Gibbs effects occur at the discontinuous or abrupt variation points. They yield parame-
ter fluctuation in the series based approximation and then deteriorate the identification
performance. Cosine series (CS) based approximation is considered in the recursive identi-
fication (RCS) to remove the discontinuity at the data window edges [21] and a forgetting
weight is imposed on the system output in order to mitigate the variation in the past
virtual parameters [22]. However, at the discontinuous points or abrupt changing points
inside the data window, fluctuation caused by Gibbs effect still exists in parameter ap-
proximation of rapid varying system; therefore, it should be detected and compensated
in order to guarantee the identification performance for time-varying systems.
Thresholds are often used to distinguish the abrupt variation. Due to the complicated

variation situations in the practical systems, however, the preset hard thresholds cannot
deal with abrupt variation well, especially several varying parameters mutually influence
each other. Consequently, a soft threshold determined by neural network is investigated
and its compensation is applied in the new algorithm. By contrast with the existing
methods, the proposed algorithm detects the abrupt variation under various variations,
and mitigates the fluctuation in CS parameter approximation, so it has better track
performance and is more effective for rapid time-varying systems.
The rest of the paper is organized as follows. In the next section, the main preliminaries

for parameter approximation based on CS and Gibbs effect are reviewed. In Section 3,
the recursive algorithm of RCS is discussed. Then the neural network based approach
to detecting the abrupt variation, and the compensation approach to reducing the Gibbs
effect are investigated in Section 4. Section 5 illustrates the numerical example. Finally,
the conclusion and the future research work are given in Section 6.

2. Preliminaries.

2.1. Problem statement of time-varying identification. Consider a linear time-
varying system that can be described by the following model

y(k) = hk
0u(k) + hk

1u(k − 1) + · · ·+ hk
nu(k − n) + e(k), (1)

where n is the model order, while u(k), y(k) and e(k) are the input, output and noise
at a discrete instant k, respectively. The superscript and subscript of the parameter hk

i

indicate the parameter with lag i at instant k. It indicates that the model parameters hk
i

vary with time k, and should be estimated promptly from the data of u(k), y(k).

2.2. CS based approximation. Assume that the current instant is k, the sliding da-
ta window is defined as [k −K, k] with window length K. If the parameters hk

i within
the data window are virtually expanded into an even periodic function with respect to
[k − 2K, k −K] and [k −K, k], then the parameters of hk−K

i , . . . , hk
i can be approximated

by the cosine series with period 2K as follows.

hk0+k1
i ≈

M∑
m=0

cki,m cos (mωk1), ω =
π

K
, (2)

where k0 = k−K, 0 ≤ k1 ≤ K, M is the degree of the series, and the virtual parameters
for −K ≤ k1 < 0 can also be calculated from (2). In the data window [k −K, k], the
coefficients cki,m can be treated as constants. Correspondingly, the identification problem
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of hk
i , i = 0, 1, . . . ,M , k = 0, 1, . . . in (1) becomes estimation of the constant coefficients

within the sliding data window. Furthermore, in the virtual expansion of even periodic
functions, the virtual parameter hk0+k1

i for k1 = −2K equals hk
i for k − k0 + 2K in CS

approximation, and the Gibbs effect can be reduced at the window edges.
In order to reduce the series degree M , a forgetting factor λ, 0 < λ < 1 is introduced

into the system output y(k−K), . . . , y(k) [22], and then the weighted output at k−k0+k1

λK−k1y(k0 + k1) =
(
λK−k1hk0+k1

0

)
u(k0 + k1) +

(
λK−k1hk0+k1

1

)
u(k0 + k1 − 1) + · · ·

+
(
λK−k1hk0+k1

n

)
u(k0 + k1 − n) + λK−k1e(k0 + k1)

= h
k0+k1
0 u(k0 + k1) + h

k0+k1
1 u(k0 + k1 − 1) + · · ·

+h
k0+k1
n u(k0 + k1 − n) + e(k0 + k1) (3)

holds for 0 ≤ k1 ≤ K. (3) can be regarded as imposing the forgetting factor on the model
parameters, hence the rapid variation at past instants is mitigated virtually, and then

h
k0+k1
i is approximated better than the original parameters hk0+k1

i with low series degree
M .

2.3. Gibbs effect in CS approximation. The trigonometric basis based approximation
suffers from Gibbs effect at abrupt variation or discontinuous points if the series degree M
is not high enough. An example is shown in Figure 1, where the time-varying parameter
hk
i has an abrupt jump at k = 700. Though the CS approximation fits the true parameter

well in the smooth region, it has fluctuation at the discontinuous point, and yields about
10% approximation error even for M = 50. The approximation error leads to much larger
prediction errors and then results in large bias in parameter estimation. In order to
improve the identification performance, it is important to promptly detect the rapid
changing points and further to compensate the fluctuation in CS approximation.
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Figure 1. Illustration of Gibbs effect at discontinuous point

A threshold is often applied to detecting the abrupt variations. Due to the various types
of unpredictable variations, the preset hard threshold based on the amplitude of variation
only has misjudgments. To be adaptive to the various changing characteristics, a soft
threshold function using the prediction errors and estimated parameters is considered.

3. Recursive Identification. Commonly it is expected to identify the time-varying
models recursively. The data vectors and matrices are defined first in the algorithm.

3.1. Definition of data matrices and vectors. Let the regression vectors and trigono-
metric function matrices be defined as follows:
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ϕk
c (k1) =


ϕk

c,0(k1)

ϕk
c,1(k1)

...
ϕk

c,M(k1)

 , ϕk
s(k1) =

 ϕk
s,1(k1)
...

ϕk
s,M(k1)

 ,

ϕk
c,0(k1) = [u(k0 + k1), . . . , u(k0 + k1 − n)]T ,

ϕk
c,m(k1) =W

k1
c,mϕ

k
c,0(k1), ϕ

k
s,m(k1) =W

k1
s,mϕ

k
c,0(k1),

W k1
c,m = cos(mωk1)I, W

k1
s,m = sin(mωk1)I, (4)

where I is an identity matrix with the appropriate dimension, W k1
c,m and W k1

s,m are the
diagonal matrices of cos(mωk1), sin(mωk1), respectively, while the parameter vectors are

θkc,m =
[
ck0,m, c

k
1,m, . . . , c

k
n,m

]T
, θkc =

[(
θkc,0
)T

,
(
θkc,1
)T

, . . . ,
(
θkc,M

)T]T
, (5)

and then the model in (3) can be approximated as a compact formula

λK−k1y(k0 + k1) =
(
ϕk

c (k1)
)T
θkc + ē(k0 + k1). (6)

Furthermore, define the correlation vector, correlation matrix and its inverse as

ϕk
cy =

K∑
k1=0

λK−k1ϕk
c (k1)y

k(k1), Φk
cc =

K∑
k1=0

ϕk
c (k1)

(
ϕk

c (k1)
)T

, P k =
(
Φk

cc

)−1
.

Then the estimation of the coefficient vector θkc of the CS approximation can be given by

θ̂
k

c =
(
Φk

cc

)−1
ϕk

cy = P
kϕk

cy. (7)

3.2. Update of data matrices and vectors. (7) is implemented recursively in RCS
algorithm. When the sliding data window shifts from [k−K, k] forward to [k+1−K, k+1]
at the next instant k+1, the updated correlation matrix Φk+1

cc in the new data window is

Φk+1
cc =

K∑
k1=0

ϕk+1
c (k1)

(
ϕk+1

c (k1)
)T

=
[
W c W s

]([W−1
c ϕ

k
c (K + 1)
0

] [ (
ϕk

c (K + 1)
)T
W−1

c 0T

]
−
[
ϕk

c (0)
0

] [ (
ϕk

c (0)
)T

0T

]
+

[
Φk

cc Φk
cs

Φk
sc Φk

ss

])[
W c

W s

]
, (8)

where W c and W s are the diagonal matrices with the diagonal blocks W 1
c,m, W

1
s,m for

m = 0, 1, . . . ,M , respectively.
From (8), it is seen that it is difficult to update the inverse of Φk+1

cc due to extra terms
such as Φk

cs, Φ
k
sc, Φ

k
ss and ϕ

k
c (0). Then, the updating should be simplified in the recursion

to guarantee the recursive computability. Let the matrices Φ1, Φ2 be denoted as

Φ1 =W
−1
c ϕ

k
c (K + 1)

(
ϕk

c (K + 1)
)T
W−1

c − ϕk
c (0)

(
ϕk

c (0)
)T

+Φk
cc = Ψk+1 +Φk

cc,

Φ2 =W
−1
cs Φ

k
sc +Φk

csW
−1
cs +W−1

cs Φ
k
ssW

−1
cs , (9)

ψk+1 =
[
W−1

c ϕ
k
c (K + 1), ϕk

c (0)
]
, ψ̄

k+1
=
[
W−1

c ϕ
k
c (K + 1), −ϕk

c (0)
]
,

ȳk+1 =
[
yk(K + 1), −λK+1yk(0)

]T
,

whereW−1
cs =W−1

c W s, then Φk+1
cc in (8) can be expressed by Φk+1

cc =W c

(
Φ1+Φ2

)
W c.

It implies that the extra matrices in Φ2 make the inverse of Φk+1
cc be very complicated.

On the other hand, generally ∥Φ1∥ ≫ ∥Φ2∥ holds when the data window length K is
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much larger than the series degree M , and the entries of Φ−1
1 Φ2 are much smaller than

1. Consequently, the following inversion can be approximated by(
I +Φ−1

1 Φ2

)−1
= I −Φ−1

1 Φ2 +
(
Φ−1

1 Φ2

)2 − · · · ≈ I −Φ−1
1 Φ2, (10)

and it yields the approximation of inverse of P k+1, i.e., the inverse of Φk+1
cc as follows

P k+1 =
(
Φk+1

cc

)−1
=W−1

c (Φ1 +Φ2)
−1W−1

c ≈W−1
c

(
I −Φ−1

1 Φ2

)
Φ−1

1 W
−1
c , (11)

where Φ−1
1 can be updated following matrix inversion lemma [13]

Φ−1
1 =

(
I − gk+1

(
ψ̄

k+1
)T)

P k, (12)

whereas gk+1 is a gain vector given by

gk+1 = P kψk+1

(
I2 +

(
ψ̄

k+1
)T
P kψk+1

)−1

. (13)

Notice that I2 +
(
ψ̄

k+1
)T
P kψk+1 is a 2× 2 matrix, so it is easy to calculate gk+1.

Similarly as Φk+1
cc , the correlation vectors ϕk+1

cy and ϕk+1
sy can be updated by

ϕk+1
cy =W c

(
ψk+1ȳk+1 + λϕk

cy +W
−1
cs λϕ

k
sy

)
,

ϕk+1
sy = −W s

(
ψk+1ȳk+1 + λϕk

cy

)
+W cλϕ

k
sy.

(14)

From (14), the extra term ϕk
sy can be expressed by the past data

ϕk
sy = −W s

(
ψkȳk + λϕk−1

cy

)
+W cλϕ

k−1
sy . (15)

Since the matrices W c, W s and W
−1
cs are diagonal, ϕk

sy can be rewritten as

ϕk
sy =W c

(
I +W−2

cs

)
λϕk−1

sy −W−1
cs λϕ

k
cy. (16)

3.3. Update of parameter estimation. Now substitute the approximated formulae of

P k+1 and ϕk+1
cy to deduce the recursive estimation θ̂

k+1

c = P k+1ϕk+1
c in the new window

[k+1−K, k+1], where ϕk+1
cy in (14) is split into two parts: W c

(
ψk+1ȳk+1 + λϕk

cy

)
and

W sλϕ
k
sy. Multiplying Φ−1

1 W
−1
c by the first part of ϕk+1

cy yields that

Φ−1
1 W

−1
c W c

(
ψk+1ȳk+1 + λϕk

cy

)
=

(
ψk+1

(
ψ̄

k+1
)T

+Φk
cc

)−1 (
ψk+1ȳk+1 + λϕk

cy

)
. (17)

Similarly as the standard recursive formula in [13], (17) can be compactly rewritten as

λP kϕk
cy + g

k+1εk+1 = λθ̂
k

c + g
k+1εk+1, (18)

where the prediction error εk+1 is defined by

εk+1 = ȳk+1 −
(
ψ̄

k+1
)T

λθ̂
k

c . (19)

Let θks = P kW sϕ
k−1
sy . For the rest part of ϕk+1

cy in (8), substituting (15) into the

multiplication of Φ−1
1 W

−1
c and W sϕ

k
sy yields that

Φ−1
1 W

−1
c W sϕ

k
sy ≈

(
I − gk+1

(
ψ̄

k+1
)T)((

I +W−2
cs

)
θ̂
k

s −W−2
cs θ̂

k

c

)
. (20)

Furthermore, define the gain matrices to simplify the recursive formulae of P k+1 and θ̂
k+1

c

Gk+1 =W−1
c

(
I −

(
I − gk+1

(
ψ̄

k+1
)T)

Ωk

)
,

Gk+1
s = Gk+1

(
I − gk+1

(
ψ̄

k+1
)T)

,

(21)
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where Ωk = P kΦ2. Then, by combining (18) with (20), the new parameter vector and
the inverse of the correlation matrix can be concluded as follows:

θ̂
k+1

s = λGk+1
s

((
I +W−2

cs

)
θks −W−2

cs θ
k
c

)
,

θ̂
k+1

c = P k+1ϕk+1
cy = Gk+1

(
λθ̂

k

c + g
k+1εk+1

)
+ θ̂

k+1

s , (22)

P k+1 = Gk+1Φ−1
1 W

−1
c = Gk+1

(
I − gk+1

(
ψ̄

k
)T)

P kW−1
c .

The estimate in (22) is composed of two parts: the first part projects the term λθ̂
k

c +

gk+1εk+1 onto the cosine basis in the new window, while the second part θ̂
k+1

s corresponds
to transition effect on the extra terms ϕk

s , ϕ
k
sy appearing with the data window sliding.

Moreover, the correlation matrix and vector are updated as follows:[
Φk+1

cc Φk+1
cs

Φk+1
sc Φk+1

ss

]
=

[
W c W s

−W s W c

][
Φk

cc +Ψk+1 Φk
cs

Φk
sc Φk

ss

] [
W c −W s

W s W c

]
. (23)

3.4. Some computational techniques. In (22) the matrix dimension (M + 1)(n +
1) makes the computation of matrix multiplication complicated for the high degree M .
Following the orthogonality of cosine basis, if u(k) is assumed as a pseudo-stationary
signal,

1

K

[
K∑

k1=0

ϕk
c,m1

(k1)
(
ϕk

c,m2
(k1)

)T]

≈ E
{
ϕk

c,0(k1)
(
ϕk

c,0(k1)
)T} 1

K

K∑
k1=0

cos(m1ωk1) cos(m2ωk1) →
{
̸= 0 (m1 = m2)

= 0 (m1 ̸= m2)
(24)

holds for the data vectors of ϕk
c,m1

(k1) and ϕ
k
c,m2

(k1) within the data window. Therefore,

corresponding to the structure of ϕk
c (k1) and ϕ

k
c,m(k1) defined in (4), it is seen that Φk

cc

can be divided into (M + 1) sub-blocks with respect to m. Consequently, the parameter
update can also be implemented separately for m = 0, 1, . . . ,M , where the parameters
corresponding to m = 0 are similar as the recursive least squares (RLS).
Moreover, the parameters within the data window at k, k − 1, k − 2, . . . , k − K are

obtained from the CS approximation. Then the parameters at k−1, k−2, . . . can smooth
the past estimates to reduce the influence of noise; however, the influence of Gibbs effect
caused by the discontinuity still remains in the estimates.
If there exist measurable process variables that indicate the process characteristics vari-

ation, the variation information can be obtained through monitoring the process variables;
otherwise the variation points have to be detected through appropriate thresholds. In the
next section, a soft threshold is investigated for RCS algorithm.

4. Detection of Rapid Changing Points. In practical applications, some abrupt pa-
rameter variations occur randomly with unpredictable variation amplitudes, whereas the
variation of one parameter influences the estimation of the other parameters through the
prediction errors εk+1; correspondingly, in order to be adaptive to various variations, a
threshold should involve much information of identification results. Such threshold is com-
monly a complicated nonlinear one that is difficult to give a theoretical formula. A preset
hard threshold given by variation of the estimated parameters only often misjudges under
various situations, hence a nonlinear soft threshold is approximated by using a series of
information obtained in identification. To avoid the theoretical deduction, the nonlinear
threshold is implemented by neural network, as illustrated in Figure 2(a). The input

data to the neural network are the estimated parameters ĥk
i , . . . , ĥ

k−Kp

i and the prediction
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Figure 2. Detection of abrupt variation point

∆

Figure 3. Illustration of compensation function

errors εk, . . . , εk−Kp within a sliding parameter window [k −Kp, k], the network outputs
are the approximated soft thresholds ∆0, . . . ,∆k−Kp at the instants k, k − 1, . . . , k −Kp.

The coefficients of neural network are determined by optimization algorithms, while the
training samples are the simulation data of the estimated and true parameters generated
by various time-varying models. When it detects the rapid changing point kv as shown in
Figure 3, a compensation function ski (k1) that jumps to ∆̂i and slowly attenuates to 0 is
used to compensate h̄k0+k1

i by h̄k0+k1
i − ski (k1), where α and β are constants of α > β > 0.

It mitigates the variation of parameters, while the estimates ĥk0+k1
i are calculated by the

summation of compensated CS approximation and ski (k1).

5. Numerical Example. A simple 3rd order linear model is considered in the numer-
ical example, where the model parameters have abrupt variations with large variation
magnitudes. To make the approximation error be no more than 10% for the large abrupt
variations, the degree of CS approximation is chosen as M = 50. The estimated parame-
ter of hk

2 around a discontinuous point k = 4893 is shown in the left of Figure 4. It is seen
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that the estimate obtained by RCS algorithm tracks the true time-varying parameters
faster than RLS; however, there still is fluctuation around the discontinuous point.
The trained neural network detects the abrupt variation point at kv = 4894 using the

estimated parameters ĥk
i , . . . , ĥ

k−30
i and prediction errors εk, . . . , εk−30, where Kp = 30,

and then the parameter estimation is compensated by ski (k1), where α = 0.05, β = 0.0005.
As shown in the right of Figure 4, the large variation is compensated by ski (k1), so the
fluctuation is largely mitigated, and the tracking becomes slightly faster at the variation
point. The situation where several large variations occur in a short period has not been
investigated yet in the example. If the detection is further optimized around kv to reduce
the detection error, the detection and compensation performance can be improved greatly.

6. Conclusions. The recursive identification algorithm is presented for rapid time-vary-
ing systems by using cosine series approximation with the forgetting factor on the system
output, and detecting rapid changing is introduced in the proposed algorithm. It has
been illustrated that the forgetting factor can reduce the degree of cosine series, and the
compensation of the parameter approximation at the rapid changing point can mitigate
the fluctuation in the parameter approximation; therefore, the identification performance
can be improved for the rapid changing systems. Some meaningful issues such as the
accuracy improvement of changing points detection, implementation of the parameter
compensation into recursion of parameter update will be considered in the future work.
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