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Abstract. In 1975, Zadeh introduced the concept of type-2 fuzzy set to model impreci-
sion and uncertainty. type-2 fuzzy set is a fuzzy set whose membership grade is type-1
fuzzy set. The extension of this concept to real numbers is the type-2 fuzzy number, and
many researchers have devoted their efforts to this research. The authors defined a new
type-2 fuzzy number and a method for disjoint t-norm operations. In this paper, we pro-
pose a method of performing disjoint t-norm operations on type-2 fuzzy numbers using
interval operations.
Keywords: Type-2 fuzzy number, T-norm, Triangular shaped type-2 fuzzy number,
Uesu product

1. Introduction. Type-2 fuzzy set is a fuzzy set whose membership grade is type-1 fuzzy
set. Type-2 fuzzy set on real numbers is type-2 fuzzy number, and many researchers have
devoted their efforts to this research. The authors have conducted various studies on the
arithmetic of type-2 fuzzy numbers.

As for type-2 fuzzy sets, Liu proposed an extension of type-2 fuzzy logic to α-cuts of
type-2 fuzzy sets using the notion of α-planes [5]. Furthermore, Mendel and Liu defined
type-2 fuzzy logic as a restricted special case of type-2 fuzzy logic represented by its α-
plane [7]. Hamrawi and Coupland also defined quasi type-2 fuzzy numbers and derived
their arithmetic operations [8].

We defined a new type-2 fuzzy number “Triangular Shaped Type-2 Fuzzy Numbers”,
and then we defined the t-norm operation on this number. In this paper, we propose a
method of performing disjoint t-norm operations on type-2 fuzzy numbers using interval
operations.

2. Fuzzy Numbers. In this paper, we denote the set of all real numbers by R, the set
of all type-1 fuzzy numbers on R by E1, and the set of all type-2 fuzzy numbers on R
by E2. Before describing the definition of fuzzy numbers, we review some definitions as a
preparation [3].

Definition 2.1. Type-1 fuzzy set [3].
Type-1 fuzzy set A on universal set X is

µA : X → [0, 1].

Type-1 fuzzy set A on universal set X is characterized by the membership function
µA(x). For simplicity, we denote µA(x) by A(x).

A whole type-1 fuzzy set on X is denoted by F1(X). In particular, type-1 fuzzy set
whose membership function A(x) takes only 0 or 1 is a set in the usual sense, but it is
called a crisp set to distinguish it from a fuzzy set.
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Definition 2.2. α-level set [3] (α-cut).
Let A ∈ F1(X), α-level set (α-cut) of A is defined as follows:

[A]α = {x ∈ X|A(x) ≥ α}, 0 ≤ α ≤ 1.

Theorem 2.1. Decomposition theorem [3].
Let A ∈ F1(X), the following equality holds

A =
∪

0≤α≤1

α[A]α.

Here, αS (S is a crisp set) is type-1 fuzzy set with the following membership function:

αS(x) =

{
α, x ∈ S
0, otherwise

.

Definition 2.3. Extension principle.
For f : X → Y , A ∈ F1(X), f(A) ∈ F1(Y ) is defined by

µf(A)(y) = sup
y=f(x)

A(x), y ∈ Y.

In the same way, for f : X1 × · · · ×Xn → Y , A1 ∈ F1(X1), . . . , An ∈ F1(Xn), f(A1, . . . ,
An) ∈ F1(Y ) is defined by

µf(A1,...,An)(y) = sup
y=f(x1,...,xn)

{A1(x1) ∧ · · · ∧ An(xn)}.

Definition 2.4. Type-1 fuzzy numbers.
A fuzzy set u on R is called a type-1 fuzzy number if it satisfies the following conditions.
1) u is normal

∃x0 ∈ R, u(x0) = 1.

2) u is fuzzy convex

u(tx+ (1− t)y) ≥ u(x) ∧ u(y), x, y ∈ R, 0 ≤ t ≤ 1.

3) u is upper semicontinuous.

4) {x ∈ R|u(x) > 0} is bounded.

Here, the triangular type-1 fuzzy numbers ⟨⟨a, b, c⟩⟩ are defined as follows.

Definition 2.5. Triangular type-1 fuzzy numbers.

⟨⟨a, b, c⟩⟩(x) =
{
x− a

b− a
∧ x− c

b− c

}
∨ 0

Figure 1. Triangular type-1 fuzzy number

Definition 2.6. Type-2 fuzzy set [6].
The type-2 fuzzy set Ã on universal set X is

µÃ : X × JX → [0, 1].

The type-2 fuzzy set Ã on universal set X is characterized by the type-2 membership
function µÃ(x, u), where x and u are the primary values of Ã, respectively. Here, x and
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u are called the primary and secondary variables of Ã, respectively, and JX denotes the
domain of definition of u (domain of the primary membership grade).

Ã =
{
((x, u), µÃ(x, u))|x ∈ X, u ∈ JX ⊂ [0, 1]

}
.

In particular, we have type-2 fuzzy set Ã:

Ã =
{
((x, µ1(x)), µ2(µ1(x), u))|x ∈ X, u ∈ [0, 1]

}
,

where µ1 is called the primary membership function and µ2 is called the secondary mem-
bership function.

Here, we would extend triangular type-1 fuzzy numbers to type-2. It is very important
to define the principal set as a symmetric triangular type-1 fuzzy number. We have call
this new type-2 fuzzy numbers “Triangular Shaped Type-2 Fuzzy Numbers”.

Definition 2.7. Triangular shaped type-2 fuzzy numbers.
A triangular shaped type-2 fuzzy number Ã1 on R is defined by the following:

µ1(x) = ⟨⟨a− 1, a, a+ 1⟩⟩(x)max{1− |x− a|, 0},

µ2(µ1(x), u) =


1− |u− µ1|

µ1 ∧ (1− µ1)
, µ1 ̸= 0, 1{

1, u = µ1

0, otherwise
, µ1 = 0, 1

.

Example 2.1. Triangular shaped type-2 fuzzy numbers.
Let

µ1(x) = ⟨⟨1, 2, 3⟩⟩(x), µ2(x, u) =


1− |u− µ1|

µ1 ∧ (1− µ1)
, µ1 ̸= 0, 1{

1, u = µ1

0, otherwise
, µ1 = 0, 1

.

Then, plotting the point (x, u, µ2(x, u)) in 3D space, we get the surface of the type-2 fuzzy
set in Figure 2.

For type-2 fuzzy sets, we could consider α-cut sets as in type-1. For this purpose, we
define the β-plane.

Figure 2. Type-2 fuzzy set
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Definition 2.8. β-plane [10].
Let Ã ∈ F2(X), β-plane of Ã is defined by[

Ã
]
β
=

{
(x, u)|µÃ(x, u) ≥ β

}
, 0 ≤ β ≤ 1.

In particular, we have type-2 fuzzy set Ã:

Ã =
{
((x, µ1(x)) , µ2 (x, µ1(x))) |x ∈ X

}
,

where µ1 is called the primary membership function and µ2 is called the secondary mem-
bership function.

Remark 2.1. Mendel et al. refer to it as α-plane [7], but in this paper we refer to it as
the β-plane for ease of distinction.

From Definition 2.8, the type-2 fuzzy set Ã could be described as follows:

Ã =
∪

0≤β≤1

β
[
Ã
]
β
.

Then, α-cut of this β-plane could be considered.

Definition 2.9. α-cut of β-plane [10].

Let Ã ∈ F2(X), if β-plane of Ã is expressed by
[
Ã
]
β
=

⟨
Aβ, Aβ

⟩
, LMF Aβ (Lower

Membership Function) and UMF Aβ (Upper Membership Function), then α-cut of β-plane
is defined by [

Ã
]α
β
=

⟨[
Aβ

]
α
,
[
Aβ

]
α

⟩
.

Theorem 2.2. Decomposition theorem for type-2 fuzzy set [11].
Let Ã ∈ F2(X), the following equality holds

Ã =
∪

0≤β≤1

β
∪

0≤α≤1

α
[
Ã
]α
β
.

For type-2 fuzzy set Ã on the universal set X, the fuzzy bound of the primary mem-
bership grade is called the footprint (FOU, Footprint of Uncertainty); the FOU of type-2
fuzzy set Ã is defined as follows.

Definition 2.10. Footprint [9].
Let Ã ∈ F2(X), the union set of all of the primary membership grade is called the

footprint of the type-2 fuzzy set Ã and is defined by the following:

FOU
(
Ã
)
=

∫
X

JX .

Footprint is the region obtained by projecting the type-2 fuzzy set onto the xu-plane,

which is equal to the β-plane
[
Ã
]
β
(β = 0).

Furthermore, Principle Set (PS) of type-2 fuzzy set Ã is defined by the following.

Definition 2.11. Principle set [9].
Let Ã ∈ F2(X), a set whose secondary membership grade is 1 is called the principle set

of the type-2 fuzzy set Ã and is defined as follows:

PS
(
Ã
)
=

{
(x, u)|x ∈ X,µÃ(x, u) = 1

}
.

The principle set is the same set as β-plane
[
Ã
]
β
(β = 1).
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Figure 3. Footprint

Figure 4. Principle set

Example 2.2. Principle set of Example 2.1.
For Example 2.1, we could obtain Figure 4.

Next, we consider type-2 fuzzy numbers, which are defined as type-1 fuzzy sets with
both normality and convexity. Here, we define a perfect type-2 fuzzy number which is
convex and normal.

Definition 2.12. Perfect type-2 fuzzy numbers [12].
A type-2 fuzzy set ũ on R is called a perfect type-2 fuzzy number if it satisfies the

following conditions.
1) UMF/LMF of FOU(ũ) are type-1 fuzzy numbers.
2) UMF/LMF of PS(ũ) are type-1 fuzzy numbers.

Example 2.3. Non perfect type-2 fuzzy numbers.
If we define the type-2 fuzzy number as follows, the footprint becomes as shown in Figure

5.
µ1(x) = ⟨⟨1, 2, 3⟩⟩(x), µ2(x, u) = max{1− 10|u− x|, 0} (0 ≤ u ≤ 1).

From the figure that the lower membership function does not equal 1 clearly, so it is
not normal. Therefore, it is not a perfect type-2 fuzzy number.

3. T-norms. We would like to consider t-norm operation of type-2 fuzzy numbers. Type-
1 fuzzy numbers and type-2 fuzzy numbers are usually computed using the expansion
principle, but sometimes they are not fuzzy numbers if disjoint t-norms are used.
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Figure 5. Footprint

Definition 3.1. Uesu product [6].
Uesu product Tλ(p, q) is defined as follows:

Tλ(p, q) =

{
p ∧ q, p ∨ q ≥ 1− λ

0, otherwise
.

Example 3.1. Non type-1 fuzzy numbers.
Consider the type-1 fuzzy numbers 0.2*, 0.7*:

µ0.2∗(x) = max

{
0, 1− 1

0.2
|x− 0.2|

}
, µ0.7∗(x) = max

{
0, 1− 1

0.3
|x− 0.7|

}
.

Using Uesu product with λ = 0.3,

Tλ(p, q) =

{
p ∧ q, p ∨ q ≥ 1− λ

0, otherwise
,

then, we have

Tλ(0.2
∗, 0.7∗) =

{
µ0.2∗(z), 0 < z ≤ 1

1, z = 0
.

From Figure 6, this is not convex and is not a type-1 fuzzy number.

Figure 6. Result of Uesu product
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Based on this result, we define the operation by t-norm of type-2 fuzzy numbers by
α-cut of β-plane.

Definition 3.2. T-norm operation for type-2 fuzzy numbers.
Let perfect type-2 fuzzy numbers ũ and ṽ on R, and their β-planes and α-cut are

[ũ]αβ =
⟨[
uβ

]
α
, [uβ]α

⟩
=

⟨[
uβ,−,α, uβ,+,α

]
, [uβ,−,α, uβ,+,α]

⟩
,

[ṽ]αβ =
⟨[
vβ
]
α
, [vβ]α

⟩
=

⟨[
vβ,−,α, vβ,+,α

]
, [vβ,−,α, vβ,+,α]

⟩
.

Then, T (ũ, ṽ) is defined by the β-plane and α-cut operations. Here, for simplicity, we
omit the subscripts α and β for the endpoints of the α-cut.

T (ũ, ṽ) =
∪

0≤β≤1

β
∪

0≤α≤1

α [T (ũ, ṽ)]αβ ,

where
[T (ũ, ṽ)]αβ =

⟨[
T
(
u−, v−

)
, T

(
u+, v+

)]
, [T (u−, v−) , T (u+, v+)]

⟩
.

Example 3.2. Non type-1 fuzzy numbers.
Consider the perfect triangular type-2 fuzzy numbers [12] 0̃.2, 0̃.7:

0̃.2 = ⟨⟨0, 0.05, 0.1; 0.2; 0.3, 0.35, 0.4⟩⟩, 0̃.7 = ⟨⟨0.5, 0.55, 0.6; 0.7; 0.8, 0.85, 0.9⟩⟩
Using Uesu product, we have[

Tλ

(
0̃.2, 0̃.7

)]α
β
=

⟨[
Tλ

(
u−, v−

)
, Tλ

(
u+, v+

)]
, [Tλ (u−, v−) , Tλ (u+, v+)]

⟩
.

With λ = 0.5, we obtain type-2 fuzzy number as shown in Figure 7.

Figure 7. Result of Uesu product

Then, we could also see that the result of this operation is a perfect type-2 fuzzy
number.

4. Conclusions. By defining the disjoint t-norm operation of type-2 fuzzy numbers as
an interval operation, we have generalized the t-norm operation. In the future, we would
like to further study type-2 fuzzy numbers and their applications.
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