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Abstract. A subspace identification based model predictive control (MPC) approach is
proposed in this paper for systems with unknown dynamics. The system model is predicted
directly based on the known input and output data, which simplifies modeling procedure,
especially for complicated systems. Specifically, the MOESP algorithm is employed in our
work, based on which the state space model is derived. The infinite-horizon min-max MPC
approach is considered to optimize the system performance. The proposed method involves
offline training and online identifying of the system model, with moderate computation
requirements. This approach is further applied to a boost converter control problem. Sim-
ulations demonstrate the effectiveness of the method.
Keywords: Subspace identification, MOESP, Model predictive control, State-space
model

1. Introduction. Model predictive control (MPC) originates from process industries,
such as petrochemical, and smelting. It has profound engineering background and theo-
retical significance. This method is widely investigated in academic community and various
practical industrial applications. It is featured by three basic characteristics: prediction
model, rolling optimization and feedback correction [1]. However, with the progress of
science and technology, the scale of modern industrial equipment is becoming larger and
larger, and the modeling work becomes more and more complicated. It is desirable to
effectively build dynamic models for control systems. Therefore, a data-driven MPC ap-
proach is investigated in this work.

Van Overschee and De Moor introduced the subspace identification algorithms [2] for
deterministic and random systems, respectively. When the prior structure information is
unknown, the direct identification of the system model by using the input and output data
obtained from the experiment has the robustness of numerical calculation, which makes
the subspace method widely used in multivariable systems. Due to the above advantages,
data-driven control methods, including predictive control, have been widely studied based
on subspace identification techniques.

In the development of subspace identification algorithms, the classical algorithms main-
ly include three identification methods: MOESP (multivariable output error state space)
[3], CVA (canonical variate analysis) [4] and N4SID (numerical algorithm for subspace
state space system identification) [5]. MOESP was proposed by Verhaegen in 1993 [3],
and its identification procedure generally consists of two steps. The first step is to con-
struct the Hankel matrix with data and decompose it by QR technology. Then obtain the
consistency estimation of the extended observable matrix through the mutually orthogo-
nal subspace decomposed. The second step is calculating the system correlation matrix
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by estimating the extended observable matrix. Although MOESP needs to construct a
larger matrix when solving the input matrix B and feedback matrix D, compared with
the N4SID process using least squares to solve the system matrix and output matrix, this
method is easier to solve and has higher accuracy. Therefore, MOESP is employed in this
paper.
A genetic algorithm (GA) is used in [6] for optimal estimation. In a data-driven control

system based on online subspace identification and the MPC method, the relationship
among the output saturation step, prediction horizon and subspace matrix is obtained.
An optimal tuning method of unconstrained data-driven subspace predictive control is
proposed for non-minimum phase open-loop stabilization [7]. In [8], an MPC approach
was developed for a class of nonlinear systems based on subspace identification of bilinear
models. Compared with the above papers, this paper obtains the coefficient matrix of
the system state space equation based on the method of combining offline and online
subspace identification. The proposed MOESP algorithm is simple and accurate. On the
basis of dealing with the constraint problem of the control input, the predictive control is
adopted. The parameters of the system are identified online using the input and output
data groups generated in real time during the control process, so that the identification
results of the system are more accurate than the original identification results.
The flowchart diagram shown in Figure 1 mainly reveals the approach proposed in this

paper. This paper is devoted to getting the model of the unknown system and controlling
the plant to make it run stably and achieve a good running state through the simple
method of combining subspace identification and predictive control. The method proposed
in this paper is applied to the control problem of boost converter. Simulation results
demonstrate the effectiveness of the proposed method.

Figure 1. The overall flowchart diagram of the proposed method

The structure of this paper is organized as follows: Section 2 describes the subspace
identification method; Section 3 shows the design of MPC strategy; Simulations on boost
converter control are provided in Section 4; Section 5 draws some conclusions.

2. Subspace Identification Method. In this section, we will introduce the subspace
identification method of MOESP. We will show the composition of data matrices and the
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LQ decomposition method which are used in model identification. Then, the detailed
implementation procedure of MOESP method [9] is given.

The state-space model to be obtained using the data-driven approach is shown below:

x(t+ 1) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t), t = 0, 1, . . .
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control input, y(t) ∈ Rp the output
vector, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are constant matrices. The
following MOESP method for subspace identification is based on the above system model.

2.1. Data matrices. Given the following input-output data

(u(0), u(1), . . . , u(k +N − 2)) , (y(0), y(1), . . . , y(k +N − 2)) ,

where k is greater than the dimension of the state vector n, and N is sufficiently large.
The block Hankel matrices are built based on the input and output data,

U0|k−1 =


u(0) u(1) · · · u(N − 1)

u(1) u(2) · · · u(N)
...

...
. . .

...
u(k − 1) u(k) · · · u(k +N − 2)

 ,

Y0|k−1 =


y(0) y(1) · · · y(N − 1)

y(1) y(2) · · · y(N)
...

...
. . .

...
y(k − 1) y(k) · · · y(k +N − 2)

 .

The matrix input and output equations are derived by repeating Equation (1), which is
particularly important in identification. Then we can obtain

y(t)

y(t+ 1)
...

y(t+ k − 1)

 =


C
CA
...

CAk−1

x(t)+


D
CB D
...

. . . . . .

CAk−2B · · · CB D




u(t)

u(t+ 1)
...

u(t+ k − 1)

 . (2)

To simplify the notations, define

yk(t) =


y(t)

y(t+ 1)
...

y(t+ k − 1)

 ∈ Rkp, uk(t) =


u(t)

u(t+ 1)
...

u(t+ k − 1)

 ∈ Rkm.

The extended observability matrix Ok, and the block Toeplitz matrix Ψk are given as

Ok =


C
CA
...

CAk−1

 , Ψk =


D
CB D
...

. . . . . .

CAk−2B · · · CB D

 ∈ Rkp×km.

And then we get
yk(t) = Okx(t) + Ψkuk(t), t = 0, 1, . . . (3)

with uk(t) and yk(t), the block Hankel matrices U0|k−1 and Y0|k−1 are represented as

U0|k−1 =
[
uk(0) uk(1) · · · uk(N − 1)

]
, Y0|k−1 =

[
yk(0) yk(1) · · · yk(N − 1)

]
,

respectively. Therefore, it can be obtained from Equation (2) that

Y0|k−1 = OkX0 +ΨkU0|k−1, (4)

where X0 =
[
x(0) x(1) · · · x(N − 1)

]
∈ Rn×N is the initial state matrix.
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It is assumed that the external input and the initial state matrix meet the following
conditions.
Assumption 2.1.
1) rank(X0) = n
2) rank(U0|k−1) = km, where k > n
3) span(X0) ∩ span(U0|k−1) = {0}, where span(·) denotes the space spanned by the row
vectors of a matrix.

2.2. MOESP method. The LQ decomposition method is applied to a rectangular data
matrix to obtain a partitioned lower triangular matrix with zero upper right corner, i.e.,[

U0|k−1

Y0|k−1

]
=

[
L11 0
L21 L22

][
QT

1

QT
2

]
. (5)

L11, L22 are the lower triangular, and Q1 ∈ RN×km, Q2 ∈ RN×kp are orthogonal.
The MOESP method is mainly employed in this paper for model identifications. From

Equation (5), one has
U0|k−1 = L11Q

T
1 , (6a)

Y0|k−1 = L21Q
T
1 + L22Q

T
2 . (6b)

Based on Assumption 2.1, it can be known that L11 is nonsingular, so QT
1 = L−1

11 U0|k−1.
Thus, (6b) is written as

Y0|k−1 = L21L
−1
11 U0|k−1 + L22Q

T
2 . (7)

In a word, in (6b) the right side of Y0|k−1 is the orthogonality and decomposition of Y0|k−1

on U0|k−1 and its complement. By Equation (4) and Equation (6b)

OkX0 +ΨkL11Q
T
1 = L21Q

T
1 + L22Q

T
2 . (8)

It is important to note that both sides of Equation (8) are the sum of two terms. Note
that they have different meanings. The right side is an orthogonal sum, and the other
side is a direct sum. Then we can know that OkX0 ̸= L22Q

T
2 , ΨkL11Q

T
1 ̸= L21Q

T
1 . Post-

multiplying Equation (8) by Q2 yields OkX0Q2 = L22, where QT
1Q2 = 0, QT

2Q2 = Ikp.
We will get Ok, also the order of the system is obtained by decomposing L22 ∈ Rkp×kp by
SVD (singular value decomposition).
Let the SVD of L22 ∈ Rkp×kp be obtained by

L22 =
[
U1 U2

] [ Σ1 0
0 0

][
V T
1

V T
2

]
= U1Σ1V

T
1 , (9)

where U1 ∈ Rkp×n, U2 ∈ Rkp×(kp−n), Σ1 is a diagonal matrix. Then, we have

OkX0Q2 = U1Σ1V
T
1 . (10)

Therefore, Ok is defined as

Ok = U1Σ
1/2
1 , (11)

and n = dimΣ1. And then it is easy to get the matrix C

C = Ok (1 : p, 1 : n) . (12)

A is obtained by solving the following linear equation

Ok(1 : p(k − 1), 1 : n)A = Ok(p+ 1 : kp, 1 : n). (13)

Next, the estimations of B and D are considered. Since UT
2 L22 = 0, UT

2 Ok = 0, pre-
multiplying (8) by UT

2 ∈R(kp−n)×kp yields, then we can get UT
2 ΨkL11Q

T
1 =UT

2 L21Q
T
1 . Then

post-multiplying the above formula by Q1 yields
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UT
2


D 0 · · · 0
CB D · · · 0
...

. . . . . .
...

CAk−2B CAk−3B · · · D

 = UT
2 L21L

−1
11 . (14)

Equation (14) shows a linear equation about B and D, and then we adopt the least square
method to solve for them. In reality, set

UT
2 :=

[
L1 L2 · · · Lk

]
, UT

2 L21L
−1
11 :=

[
M1 M2 · · · Mk

]
,

where Li ∈ R(kp−n)×p, i = 1, . . . , k, Mi ∈ R(kp−n)×m.
Defining L̄i =

[
Li · · · Lk

]
∈ R(kp−n)×(k+1−i)p, i = 2, . . . , k. Thus, from Equation

(14) 
L1 L̄2Ok−1

L2 L̄3Ok−2

...
...

Lk−1 L̄kO1

Lk 0


[
D
B

]
=


M1

M2
...

Mk−1

Mk

 . (15)

Calculate (D,B) from Equation (15), the block matrices have full column rank, and then
k(kp− n) ≥ (p+ n) is true.

In summary, we can solve B by providing the space identification method given I/O
data U0|k−1 and Y0|k−1.

The MOESP algorithm follows the following steps:
Step 1 Calculate the LQ decomposition in Equation (5);
Step 2 Calculate the SVD of Equation (9), and let n := dimΣ1, and define the extended

observability matrix as Ok = U1Σ
1/2
1 ;

Step 3 Obtain C and A from Equation (12) and Equation (13), respectively;
Step 4 Solve Equation (15) to calculate B and D by the least square method.

3. Model Predictive Control. Consider the following quadratic cost function:

J∞(s) =
∞∑
i=0

[
∥x(s+ i|s)∥2W + ∥u(s+ i|s)∥2R

]
, (16)

where W > 0 and R > 0 are weighted matrices, and ·(s + i|s) denotes the predicted
quantities (e.g., the system state and the control input) corresponding to the time instant
s+ i based on time s. The optimization problem to be solved online is

min
u(s+i|s),i≥0

J∞(s)

s.t. x(s+ i+ 1|s) = Ax(s+ i|s) +Bu(s+ i|s) (17)

−ū ≤ u(s+ i |s) ≤ ū.

3.1. Infinite-horizon min-max MPC. The min-max approach is considered to opti-
mize the performance, i.e., derive the maximum bound of the cost function, and then
minimize it. To this end, the state feedback control law is employed,

u(s+ i|s) = Fx(s+ i|s), i ≥ 0, (18)

where F is the control gain. Define a quadratic function V (x) = xTPx, P > 0. Con-
sidering the stability conditions, the upper bound of the infinite-horizon cost function is
obtained:

V (x(s+ i+ 1|s))− V (x(s+ i|s)) ≤ −
[
∥x(s+ i|s)∥2W + ∥u(s+ i|s)∥2R

]
, (19)

which further yields
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∞∑
i=0

[
∥x(s+ i|s)∥2W + ∥u(s+ i|s)∥2R

]
≤ V (x(s|s)). (20)

Hence, V (x(s|s)) is an upper bound of the cost function. At each time instant, minimiz-
ing V (x(s|s)) is carried out. In practice, we introduce a scalar variable γ and consider
minimizing γ, subject to

V (x(s|s)) ≤ γ. (21)

By defining a matrix Q := γP−1, it is known from Schur complement that Equation (21)
is equivalent to Equation (22): [

1 x(s|s)T
x(s|s) Q

]
≥ 0. (22)

Substituting Equation (18) into Equation (19), one has

x(s+ i|s)T
[
(A+BF )TP (A+BF )− P + FTRF +W

]
x(s+ i|s) ≤ 0. (23)

The following equation can guarantee that Equation (23) meets all requirements:

(A+BF )TP (A+BF )− P + FTRF +W ≤ 0. (24)

Define F = Y Q−1. Substitute P = γQ−1 and F = Y Q−1 into Equation (24), multiply Q
on both sides of Equation (24), one has the following linear matrix inequality by resorting
to the Schur complement, 

Q ∗ ∗ ∗
AQ+BY Q ∗ ∗
W 1/2Q 0 γI ∗
R1/2Y 0 0 γI

 ≥ 0, (25)

where the symbol ∗ represents the blocks in the symmetrical positions. Now, solve the
following optimization problem:

min
γ,Q,Y

γ

s.t. Equation (22), Equation (25)
(26)

3.2. Handling of constraints. It is important to use the concept of set invariance to
deal with the constraints. Consider the above definitions γ, Q, P , F , Y , and denote
ε =

{
z
∣∣zTQ−1z ≤ 1

}
=

{
z
∣∣zTPz ≤ γ

}
. So ε is a set of ellipses. If Inequalities (22) and

(25) are satisfied, ε is an invariant set, which yileds

x(s|s) ∈ ε ⇒ x(s+ i|s) ∈ ε, ∀i ≥ 1. (27)

The input constraint in the optimization problem (17), viz., −ū ≤ u(s + i |s) ≤ ū is
considered in the following. Since ε is an invariant set, in view of the j-th element of u,
let ξj represent the j-th row of the identity matrix of order m, and then draw the following
inferences:

max
i≥0

|ξju(s+ i|s)|2 = max
i≥0

∣∣ξjY Q−1x(s+ i|s)
∣∣2 ≤ max

z∈ε

∣∣ξjY Q−1z
∣∣2

≤ max
z∈ε

∥∥ξjY Q−1/2
∥∥2

2

∥∥Q−1/2z
∥∥2

2
≤

∥∥ξjY Q−1/2
∥∥2

2
=

(
Y Q−1Y T

)
jj
, (28)

where (•)jj is the j-th diagonal element of the matrix, and ∥•∥2 is 2-norm. If there exists
a symmetric matrix Z such that the following inequality is satisfied,[

Z Y
Y T Q

]
≥ 0, Zjj ≤ ū2

j , j ∈ {1, . . . ,m}, (29)

then one can ensure that the input constraint is satisfied by resorting to the Schur com-
plement,

|uj(s+ i|s)| ≤ ūj, j ∈ {1, . . . ,m}, (30)
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which is a sufficient condition for the input constraint. The whole optimization problem
is summarized as follows,

min
γ,Q,Y,Z

γ

s.t. Equation (22), Equation (25), Equation (29)
(31)

The optimal control input and output values can be obtained by solving Equation (31).

4. Simulation Results. The boost DC-DC converter circuit shown in [10] consists of a
switching device S, an energy storage inductor L, a continuous current diode DD, a filter
capacitor C, a load resistor R and an input voltage vg. The inductance current is il and
the output voltage is v. In the inductive current continuous mode, the circuit is divided
into two phases: S on and S off.

We now apply the proposed approach to the boost converter model to verify the feasi-
bility of this approach. The two switched circuit models are shown in [10].

Steady-state (dc) model:

X =

[
I
V

]
=

Vg

Rs

[
1

(1−D)R

]
, Y =

Vg(1−D)R

Rs

, (32)

in which I is the dc inductor current, V is the dc capacitor voltage, and Y is the dc output
voltage.

Dynamic (ac small signal) model:

d

dt

[
îl

v̂

]
=


−Rl + (1−D)(Rc∥R)

L
− (1−D)R

L(R +Rc)

(1−D)R

(R +Rc)C
− 1

(R +Rc)C


[
îl

v̂

]
+

 1

L
0

 v̂g

+


R

L

((1−D)R +R)

R +Rc

− R

(R +Rc)C

 Vgd̂

Rs

,

ŷ =

[
(1−D)(Rc∥R)

R

R +Rc

][
îl

v̂

]
− Vg

Rc∥R
Rs

d̂, (33)

in which Rs = (1−D)2R + Rl +D(1 −D)(Rc∥R). vg = Vg + v̂g, Vg is the dc line input
voltage, v̂g is the line voltage variations. x = X+x̂, X is the dc value of the state vector, x̂
the superimposed ac perturbation. In the same way, y = Y + ŷ. Assuming that the duty
cycle varies from cycle to cycle, in other words, d = D + d̂, where D is the steady-state
(dc) duty ratio and d̂ is a superimposed (ac) variation.

The choice of parameters is very important for the accurate identification of the system.
As can be seen from Figure 2(a), the order of the system is 2. As shown in Figure 2(b),
the updated model identified by subspace identification method is consistent with the
actual model of the system, and the difference of Bode amplitude diagram is small. It can
be seen that MOESP method can be used to identify the plant model more accurately.

As can be seen from Figure 3, when the boost converter model is used, the load resis-
tance of the old model is changed from 5 Ω to 50 Ω at the time of 247. After the model
is changed, updated input and output data are collected, and the length of the new data
set is 30 groups. The updated model can continue to control and run stably under the
MPC method.

Compared with the existing research, the data identification method adopted in this
paper is simple and efficient, and the influence of input constraints is also taken into
account in predictive control. The identification and control are combined, and the offline
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(a) (b)

Figure 2. (a) The order of the identification model; (b) identification
model and actual model Bode diagram comparison
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Figure 3. (a) The MPC method identification model inductor current;
(b) the MPC method identification model output voltage

control is transferred to online control, so that the accuracy of model identification is
improved and the controlled object runs stably.

5. Conclusion. Subspace identification based MPC approach is proposed in this paper,
which enables identifying the state-space model with input and output data using the
MOESP method. The case that the system has varying parameters is considered, which
is addressed by online identification based on the updated data. The proposed approach
is able to identify the updated state-space model, and meanwhile, stabilize the closed-
loop control system. Simulations of a boost converter control problem are carried out
to show the effectiveness of the proposed method. The proposed method is suitable for
control systems with complicated models that are difficult to obtain. Our future work
will consider the disturbance estimation for the proposed subspace identification based
MPC approach.
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