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Abstract. The Automatic Requirements Engineering Model (AREM) is a model that
can automate the requirements engineering process. This model accepts input in the form
of requirements data from several stakeholders. The similarity of the description of the
requirements of one stakeholder with other stakeholders is very likely to occur. Therefore,
the collected requirements data are to be processed and tested for similarity so that there is
no duplication of requirements in system modeling. In this study, the CombineTF method
was developed to check the similarity of the data requirements. CombineTF is a hybrid
method that combines a term-based approach with Term Frequency (TF) and character-
based similarity. In this research, CombineTF is integrated with the Jaro-Winkler algo-
rithm and Levenshtein distance as a character-based similarity. The experimental results
show that CombineTF has a good performance for measuring the similarity of require-
ments documents with a threshold of more than 0.5.
Keywords: CombineTF, Jaro-Winkler, Levenshtein distance, Requirements engineer-
ing, Term frequency

1. Introduction. Requirements Engineering (RE) is a crucial stage for modeling re-
quirements in the software engineering process. This process consists of several stages,
including elicitation, analysis, specification, and validation. The Automatic Requirements
Engineering Model (AREM) is an automatic requirement engineering model developed by
using an oriented goal approach. This model was developed to be able to automate four
processes in RE, i.e., elicitation, analysis, specification, and validation.

In the requirements elicitation stage, the requirements of stakeholders are collected.
Stakeholders may consist of various elements, such as the organization’s leaders, managers,
and end-users. The requirements of each stakeholder will be stored in the requirements
data. All of the requirements data from all stakeholders will be incorporated into an input
for AREM to do a requirements analysis.

Requirements analysis is done by extracting the requirements data collected at the elic-
itation stage. In the process of requirements extraction, it will be found that there are
similarities between the requirements of one stakeholder and other stakeholders. There-
fore, it is important to detect similarities in the description of requirements between
stakeholders so that there is no duplication of system requirements that will affect the
quality of the requirements specifications produced by AREM.
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To perform the detection of the similarity of requirements, in AREM, we developed
a method that combines the calculation of Term Frequency (TF) by the method of
similarity-based characters. This method is named CombineTF. The TF approach is a
simple approach to detecting the occurrence of the same term in two documents [1]. The
term is a representation of a word. In the requirements data, the use of the same term by
several stakeholders is very often encountered; therefore, the detection of the same term
will be very influential in testing document similarity. In this study, TF was combined
with two character-based methods, i.e., Jaro-Winkler and Levenshtein distance.
Jaro-Winkler (JW) method is a development of the Jaro distance with the addition of

the prefix string matching calculation [2,3]. This method has good accuracy for detecting
similarities in two strings [4,5]. Meanwhile, Levenshtein distance is a method of measuring
the similarity of two strings using a matrix. This method calculates the minimum num-
ber of operations required to equalize the two strings [6]. This method has been applied
extensively and developed with various methods and other approaches. The CombineTF,
which is integrated with JW or Levenshtein, contributes to the development of a hybrid
method that integrates character-based and token-based similarity. This method has the
advantage of detecting the similarity of two texts that have many similar tokens. This
method will be able to improve AREM’s ability to detect similar requirements from stake-
holders so as to avoid duplication of requirements and improve the quality of requirements
modeling.
This paper contains the development of the CombineTF method to detect the similarity

of requirements documents in AREM. This paper is organized into five parts, that is,
introduction, related work, the development of the CombineTF method, experiments,
and results, and the final part is closed with a conclusion.

2. Related Work. The requirement data at AREM is in the form of text. Text sim-
ilarity detection is needed to determine the level of similarity in sentences, paragraphs,
or documents. The fundamental part of the similarity detection in a text is to perform
the detection of word similarity in the document [7]. The word similarity can be either
lexical or semantic similarity. Lexical similarity is rated based on the common sequence
of characters in the word.
The string-based algorithm is a method used to measure lexical similarity. String-based

similarity measures the similarity and dissimilarity through the order and arrangement of
the characters that make up words [5]. String-based algorithms are differentiated into two
groups of methods, i.e., character-based and term-based or token-based similarity [5,7].
Character-based similarity measures the similarity of two strings through the edit dis-

tance needed to make the two strings to be equal. Edit distance includes insertion, sub-
stitution, and deletion character. The similarity value is obtained based on the required
minimum edit distance [5]. Some examples of methods that use a character-based simi-
larity approach are Hamming distance, Levenshtein distance [6,8-10], Jaro, Jaro-Winkler
[2,3,5,11], and N-gram.
The term-based or token-based similarity measures string similarity based on the simi-

larity of token strings with token sets [5]. Usually, the token is in the form of a word in a
string. The term-based similarity method is such as Cosine similarity, Euclidean distance,
Manhattan distance, Dice’s coefficient, and Jaccard similarity [5].
The character-based similarity becomes very computational and has a low level of ac-

curacy if it is used to measure document similarity with many strings [5]. Meanwhile, the
term-based similarity will be less accurate if the document has very diverse tokens and the
token slice on the document is low. Based on several weaknesses of the two string-based
approaches, a hybrid method was developed based on character-based and term-based
similarity. One of them is SoftTFIDF.
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The SoftTFIDF method is a hybrid method that combines a token-based similarity
approach with character-based similarity. SoftTFIDF was developed by Cohen et al. [12].

The Hybrid SoftTFIDF approach is used in conjunction with character-based similar-
ities such as Levenstein, Jaro-Winkler, and other approaches [11-13]. The SoftTFIDF
method can work well in detecting document similarity; however, this algorithm works by
performing two measurements, namely the TFIDF calculation as in the cosine algorithm
and calculating the second algorithm such as Jaro-Winkler or Levenstein. The Combi-
neTF method simplifies the calculation process on SoftTFIDF, wherein CombineTF, the
first measurement, does not need to be carried out until the TFIDF calculation. Instead,
it is enough to measure the TF and Document Frequency (DF) of the two strings.

3. Proposed Method: CombineTF. The CombineTF method is a hybrid method
that combines token-based and character-based similarity. The CombineTF algorithm
and flowchart can be seen in Figure 1.

Figure 1. Algorithm and flowchart of CombineTF method

In Algorithm 1, it can be seen that the method accepts input in the form of string
s and string t and produces output in the form of CombineTF similarity. The method
works in three stages. First, it determines the same terms on the strings s and t. The
first step at this stage is to concatenate strings s and t to form a set of terms w. After
that, the calculation of tfw,s and tfw,t is carried out, and continued with the calculation
of dfw where w is the number of frequencies of the term, the next step is to make dic
matrix which contains a list of similar terms on s and t. Parameter |D| is the number of
tested documents or strings. In the testing similarity case of two strings, therefore value
of |D| is 2. The last step in the first stage is to form new strings such as ns and nt,
where ns and nt are strings formed from s and t after subtracting dic. It means ns and
nt have different terms from s and t. The equations used in the first stage can be seen
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from Equations (1) and (2).

dic = {w|dfw = |D|,min (tfw,s, tfw,t)} (1)

ns = s− dic (2)

The second stage applies the calculation with character-based similarity. In this study,
we use two approaches, i.e., CombineTF and Jaro-Winkler (TF-JW) or CombineTF with
Levenshtein (TF-Leven). Equation (3) below is used for the process of checking the con-
tents of the ns and nt strings where sim2 is a method similarity combined with TF; in
this case, it is Jaro-Winkler or Levenshtein.

sim2 =

 sim2d if ns ̸= ∅ and nt ̸= ∅
1 if ns = ∅ and nt = ∅
0 otherwise

(3)

The last stage is calculating CombineTF similarity by calculating p as the same term
proportion on the two strings and concatenating it with the value of sim2 in Equations
(4)-(7).

N = |s|+ |t| (4)

n = |ns|+ |nt| (5)

p =
(N − n)

N
(6)

simcombineTF = (1× p) + (sim2× (1− p)) (7)

where N is the number of terms on s and t strings, and n is the number of terms on ns
and nt. Parameter p is the same term proportions on s and t, and simcombineTF is the
summation of the same terms on both strings and sim2 different term similarity from
both strings.
For example, suppose string s = “member data processing”, and string t = “member

status data”. Based on data on TF and DF value, we obtain dic = {member, data}, so
that ns = “processing” and nt = “status”. Based on the calculation, we obtain sim2
(in this case is Jaro-Winkler) from ns and nt is 0.4892. With the sum of all terms six
and the number of different terms being 2, therefore, we obtain N = 6 and n = 2,
so we can calculate p = 0.6667. Based on the values of all the variables, we obtain
simcombineTF = 0.8297.

4. Experiment and Result. The experiment is carried out through five stages, start-
ing with the data collection of the stakeholder’s requirements, continuing with the pre-
processing. Therefore, a requirements dataset in which the similarity will be measured is
formed. Next, we do the labeling process for the requirements dataset. Finally, we do the
requirements similarity measurement. The experiment stages can be seen in Figure 2.

Figure 2. The experiment stages

4.1. Requirements data in AREM. AREM is a model for automating the require-
ments engineering process. This model uses a Goal-Oriented Requirements Engineering
(GORE) approach. In GORE, there are several elements that represent user requirements,
such as goals, tasks, and operations. The requirements data in AREM are in the form
of descriptions of each element in GORE in Bahasa Indonesia. Each element becomes an
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object in the model. Table 1 presents an example of data on the requirements of stake-
holders for a cooperative information system. The requirements data is a combination of
all elements of the model and is a combination of all stakeholders. The requirements data
that have been collected will be pre-processed in the form of case folding and stopword
removal.

Table 1. Example of requirements data

Description Object type
Make it easier to display information about cooperative goal

Calculating cooperative profit task
Record member installment payments operational

4.2. Requirements datasets and labeling. The requirement dataset is formed from
the requirements data by pairing each object to measure the similarity of the two objects.
After forming the dataset, data labels are then performed for each pair of objects. Labeling
is carried out by experts who assess the similarity of the descriptions of the two objects.
Labeling is done by assigning a number 1 for both descriptions of the same object and 0
for different ones. Table 2 shows an example of a requirements dataset.

Table 2. Example of requirements dataset

Object description I Object description II Label
Collecting member loan data Calculating cooperative profit 0
Collecting member loan data Calculating member’s loan 1
Collecting member loan data Record member installment payments 0

For the needs of the experiment, eight datasets were formed. The datasets are divided
into two types of data, namely balanced datasets, and unbalanced datasets. The compo-
sition for the unbalanced dataset is 20% of the data, it has a label of 1, and the rest is
labeled 0 for datasets 5, 6, and 7. Meanwhile, for dataset 8, the opposite applies where
20% of the data is labeled 0 and 80% is labeled 1. Each type of dataset is divided into
four data groups with a different number of descriptive sentences. The first group con-
sists of one descriptive sentence, the second group has three descriptive sentences in each
description, the third group has five sentences, and the last group has ten sentences for
each description. Table 3 presents a group of datasets used in the experiment.

Table 3. Experiment dataset

No
Dataset
type

Number of
sentences

Number
of data

No
Dataset
type

Number of
sentences

Number
of data

1 Balance 1 1,128 5 Unbalance 1 2,820
2 Balance 3 1,128 6 Unbalance 3 2,820
3 Balance 5 2,256 7 Unbalance 5 5,640
4 Balance 10 736 8 Unbalance 10 1,440

4.3. Similarity measure. In the experiment, the similarity measurement was conducted
using six methods, that is, Cosine similarity, Jaro-Winkler, Levenshtein distance, Soft-
TFIDF with Jaro-Winkler, CombineTF with Jaro-Winkler (TF-JW), and CombineTF
with Levenshtein Distance (TF-Leven). Cosine similarity is one of the methods from the
term-based similarity approach, while Jaro-Winkler and Levenshtein distance are meth-
ods from the character-based similarity approach. Meanwhile, SoftTFIDF is one of the
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approaches which are developed based on TF-IDF calculation [12,13]. This method is
often combined with Jaro-Winkler as a character-based similarity approach. In the im-
plementation of the Jaro-Winkler Algorithm, we use value for the parameter bt = 0.7,
p = 0.1, and l ≤ 4 [3].

4.4. Result and discussion. The result analysis was done to the average precision and
recall, F1 score with the dataset, analysis of F1 score with the threshold, analysis of
average F1 score, and average F1 score, particularly for the CombineTF method. The
test was done for eight datasets with six methods and a threshold from 0 to 1.
The results of precision and recall analysis show that the average precision and recall

(as shown in Figure 3) from the six algorithms gives almost the same results, except
for the Jaro-Winkler algorithm, which shows lower relation between precision and recall
than other algorithms. CombineTF-JW is able to improve precision and recall in the
Jaro-Winkler algorithm.

Figure 3. Analysis of average precision and recall of the six methods tested

The results of average F1 scores for each dataset can be seen in Figure 4. Based on
the distribution of average F1 scores in Figure 4, it can be seen that the Cosine and
SoftTFIDF-JW algorithms have the highest distribution and maximum F1 score, followed
by Levenshtein and TF-Levenshtein. Meanwhile, CombineTF-JW and Jaro-Winkler have
the lowest maximum F1 score.
If we analyze from the type of the dataset, it can be seen that all algorithms show

the same trend, such as decreasing from datasets 1 to 7. However, it is interesting on
dataset 8, the average F1 score of all algorithms reaches the highest value from the entire
dataset. Dataset 8 is a dataset that contains unbalanced data where 80% of the data is
labeled 1. Meanwhile, datasets 5 to 7 contain unbalanced data with 80% labeled as 0.
This means that all algorithms work better in testing similar data compared to dissimilar
data. While the downward trend in datasets 1 to 4 indicates that the more sentences in
a pair of strings s and t, the F1 score of the algorithm also decreases.
F1 score analysis was also carried out by looking at the threshold value applied to

the experiment. Overall, the average F1 measure which was measured by the threshold,
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Figure 4. Trend analysis of average F1 score and dataset

Figure 5. Trend analysis of average F1 score and threshold

shows a trend, as shown in Figure 5. It can be seen in Figure 5, the cosine algorithm has a
high F1 score at a threshold of 0.5 to 0.7, while SoftTFIDF-JW and Levenshtein distance
reach the highest F1 score at the threshold of 0.4 to 0.7. The maximum shift in F1 score
is shown in CombineTF-Levenshtein, wherein Levenshtein falls on a threshold of 0.4 to
0.7, then in CombineTF-Levenshtein F1 highest score is achieved at a threshold of 0.6 to
0.8. Jaro-Winkler has the lowest maximum F1 score compared to other algorithms, but
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CombineTF-JW is able to increase the highest F1 score in the Jaro-Winkler algorithm,
where the maximum F1 score is achieved at a threshold of 0.9. Overall, the CombineTF
algorithm works very well at a threshold of more than 0.5. Particularly for CombineTF-
JW, it works very well at a threshold of more than 0.8.

5. Conclusion. In this study, the CombineTF method was developed to detect the sim-
ilarity of the requirements data from stakeholders in AREM. The CombineTF is a hy-
brid method that combines a team-based approach with character-based similarity. The
method begins with the measurement process for TF and DF, followed by measurements
using the character-based method as the second method. In the experiment, two methods
were used, namely Jaro-Winkler and Levenshtein distance. The trial was carried out using
eight datasets that had different characteristics and amounts of data. As a comparison,
the tests were carried out on four other methods besides CombineTF, namely Cosine
similarity, Jaro-Winkler, Levenshtein distance, and SoftTFIDF with Jaro-Winkler.
The experimental results show that CombineTF provides better performance if the

threshold for data is more than 0.5. Particularly for CombineTF-JW, it shows the best
performance at a threshold greater than 0.8. For the type of dataset, CombineTF shows
good performance in measuring the requirement data similarity. On the other hand, poor
performance is shown when measuring dissimilarities in the dataset.
The requirements data in AREM contains a brief description of each element of the

model. In the model, the main capability needed is to test the similarity of the require-
ments data. Based on these conditions, it can be said that CombineTF is very suitable
to be used to check the requirement data similarity between stakeholders in AREM.
In this research, the experiment was limited to the requirements data in AREM. To be

able to find out the performance of the CombineTF method more generally, it is necessary
to test the method on general text documents such as news documents or other documents.
For method development, it is possible to add the N-Gram approach as done by [14] as a
second approach to measure the similarity of text that has different terms/tokens.
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