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Abstract. Solid waste management has become a concern in urban areas due to the
increasing amount of garbage generated daily. To ensure the proper handling of a variety
of wastes, waste disposal necessitates segregation. As a result, a reliable and accurate
classification method is critical for resolving this problem. Transfer learning and different
data augmentation techniques are used to train existing CNN-based waste classification
models. However, the existing methodologies involve a lengthy training process. This pa-
per proposes LitterNets, a model that achieves similar performance to existing models but
requires much less training time. LitterNets is an ensemble of heterogeneous CNN-ELM
models. The CNN-ELM models are distinct in terms of the pre-trained CNNs used as fea-
ture extractors, but the classification layer employs the same extreme learning machine
network architecture. The experiments showed that the proposed approach significant-
ly lowers training time and achieves results equivalent to existing state-of-the-art waste
classification models, even though no data augmentation techniques were utilized during
training. Further analysis revealed that using an ensemble of CNN-ELM models to in-
crease accuracy is a simple yet effective strategy. For example, on the TrashNet test set, a
LitterNets model consisting of three ResNet-ELM variants and two DenseNet-ELM vari-
ants achieved a classification accuracy of 93.97%, while training these five CNN-ELM
models took only a total of 380 seconds, or 6 minutes and 20 seconds.
Keywords: CNN-ELM model, Ensemble method, Transfer learning, Extreme learning
machine, Waste classification

1. Introduction. The quantity of garbage generated each day is growing as more people
move to urban areas. As they go about their daily lives, urban residents create a variety of
trash, including food waste, paper, cardboard, plastics, glass, metals, and bulky objects.
As a result, solid waste management has become a priority in urban areas since garbage
poses a threat to the environment as well as the health and safety of those who live there if
it is not collected and disposed of promptly and properly. Furthermore, waste segregation
is critical for the proper handling of various wastes [1]. Waste segregation necessitates a
reliable and fast classification method, and it is the first step in establishing advanced
waste disposal and segregation systems.

Conventional waste segregation and disposal methods rely on manual screening by
human sorters, which is time-consuming, labor-intensive, and detrimental to the health
of the sorters. An alternative approach is to utilize automatic waste sorting systems, as
demonstrated by current CNN-based waste classification models trained through transfer
learning and various data augmentation methods [2, 3, 4, 5]. Although this framework
yields excellent accuracy, it takes longer to develop a trained model due to the additional
steps. For example, Bircanoglu et al. [2] reported that their proposed model’s longest
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training session took three hours to complete the three hundred epochs using a GTX
1080 Ti GPU.
In contrast, LitterNets, the proposed ensemble of CNN-ELM models, can achieve eq-

uivalent performance to current models while taking significantly less training time. Lit-
terNets is an ensemble of heterogeneous CNN-ELM models, where each CNN-ELM model
differs in terms of the pre-trained CNN used as a feature extractor, but the classification
layer is created using the same extreme learning machine network architecture. Extreme
learning machine (ELM) is a single hidden layer feedforward neural network (SLFN) train-
ing method that converges considerably quicker than conventional methods and produces
remarkable results without the need for iteratively tuning the hidden weight parame-
ters [6]. As a result, each CNN-ELM model is trained in a single epoch, and no data
augmentation techniques were applied to the training images.
Essentially, this work makes the following contributions.

1) It demonstrates the reliability and effectiveness of a heterogeneous ensemble of CNN-
ELM models for automatic waste classification by utilizing transfer learning and ex-
treme learning machines.

2) It trains the proposed hybrid architecture in a single epoch in a supervised manner
without using any data augmentation methods. In this network model, the lower layers
of a pre-trained CNN are retained and used as a feature extractor, while the classifi-
cation layer is built using an extreme learning machine.

3) It reveals that the CNN-ELM framework significantly reduces training time based on
the number of epochs and produces results comparable to those obtained by existing
state-of-the-art waste classification models, despite the absence of data augmentation
techniques during training, and LitterNets is a simple yet effective method for increas-
ing accuracy.

The remainder of the paper is divided into the following sections. Section 2 examines
existing methods for automatically classifying waste, whereas Section 3 describes the
proposed methodology. Section 4 discusses the experiments and results. Finally, Section
5 presents the conclusions of this study.

2. Related Work. This section examines some of the current methods for automatically
classifying waste. These existing techniques for automatic waste classification vary in their
choice of CNN architectures, their use of data augmentation techniques to increase the size
of the training set, and their use of pre-trained CNNs for transfer learning, with the lower
layers preserved and used as a feature extractor while the classification layer is trained
to correctly classify wastes. Additionally, they are distinct in terms of the datasets used
and the number of waste classes considered.
For example, some research studies selected multiple well-known CNN models and

performed other steps such as enhancing the training data through data augmentation
techniques, training each model from scratch and fine-tuning each of the trained model-
s, and implementing other transfer learning approaches. Afterwards, these models were
evaluated and a comparison of their performance was conducted [2, 4, 5, 7]. Moreover,
several researchers also presented new waste datasets [3, 8, 9, 10] rather than just training
their models on the well-known TrashNet dataset [11]. However, the majority of the newly
created datasets are not publicly available.
Nevertheless, the existing automatic waste classification models have several limitations.

First, training must be conducted in many epochs. Second, the training period is lengthy.
Third, data augmentation techniques are used to improve accuracy. Finally, even though
they trained several CNN models, they did not examine how using the ensemble method
can improve performance.
To address these limitations, some researchers proposed using a hybrid architecture

that combines CNN and ELM for image classification. The CNN-ELM framework has
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been used to solve real-world problems such as DNA damage classification [12], age and
gender classification [13], cervical cancer classification [14], electrocardiogram (ECG) sig-
nal classification [15], and accident image classification [16]. In these studies, CNN-ELM
models outperform CNN-only models.

LitterNets is proposed as an alternative model that addresses these limitations and
employs the ensemble method to achieve better performance.

3. LitterNets: An Ensemble of CNN-ELM Models. This section describes the pro-
posed ensemble of CNN-ELM models for automatic waste classification and each of the
CNN-ELM models. Also, it is necessary to have a dataset consisting of various waste im-
ages with the associated ground-truth class labels. An overview of the LitterNets model
for automatic waste classification is shown in Figure 1 while each CNN-ELM architecture
in the LitterNets model follows the same framework depicted in Figure 2.

3.1. LitterNets for automatic waste classification. The LitterNets, as depicted in
Figure 1, combines several trained CNN-ELM models and each of these trained models
makes a prediction given an input image. Afterwards, a majority voting scheme is em-
ployed where the class label that receives the highest number of votes will be considered
the ensemble model’s final class label.
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Figure 1. LitterNets: An ensemble of CNN-ELM models

3.2. The CNN-ELM framework. As shown in Figure 2, the training and test phases
of each CNN-ELM model are pretty straightforward. Initially, the lower layers of a pre-
trained CNN are preserved and used as a feature extractor, but the classification layer
is discarded because, in the CNN-ELM model, the classification layer is built using the
extreme learning machine. Thus, during the training phase, only the ELM component is
trained.

Training the CNN-ELM is fast since it can be done in a single epoch, and no data
augmentation methods were applied on the training set. On the other hand, in the test
phase, evaluation metrics were used to quantify the performance of the trained CNN-ELM
model using the test set.

For the single-layer ELM network, the number of input neurons is the same as the
number of parameters in the last layer of the pre-trained CNN’s feature extraction layer,
the hidden layer has 100 neurons, and the number of output neurons in the output layer is
the same as the number of class labels. In addition, the activation function of all neurons
in the ELM is the Gaussian error linear unit or GELU [17].
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Figure 2. The CNN-ELM framework for LitterNets

3.3. Evaluation metrics. This section delves into the evaluation metrics that were em-
ployed in this research work. Evaluation metrics are used to measure the performance of
trained models, or how effectively they predict unknown occurrences. For classification
problems, there are four common evaluation metrics: accuracy, recall, precision, and F1-
score [18]. The proportion of correct outcomes to the total number of instances examined
is defined as accuracy in Equation (1). Precision is defined as the fraction of true posi-
tives among all positive predictions made by the classifier, as described in Equation (2).
Recall is the fraction of true positives among all samples that should have been classified
as positive, as defined in Equation (3). Finally, the F1-score is a precision-recall metric
that strikes a good balance between these two metrics. A low rate of false positives and
false negatives is necessary for an excellent F1-score. The F1-score metric is defined by
Equation (4). In the following equations, TP signifies true positive, TN denotes true
negative, FP means false positive, and FN denotes false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall
(4)

4. Experimental Results and Discussion. The dataset utilized in this study and the
experiments conducted to evaluate the performance of the proposed model, LitterNets,
are summarized in this section.

4.1. The TrashNet dataset. Yang and Thung of Stanford University produced the
TrashNet dataset [11]. This dataset contains colored images of six different types of waste,
each exclusively belonging to one type of waste. As shown in Figure 3, the six types of
waste included in the TrashNet dataset are glass, paper, cardboard, plastic, metal, and
general trash. All images in the dataset have an image resolution of 512× 384. The total
number of images in the dataset is 2,527, with the distribution of images by class given
in Table 1.
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Figure 3. Sample images from the TrashNet dataset: (a) Glass; (b) paper;
(c) cardboard; (d) plastic; (e) metal; and (f) trash

Table 1. TrashNet dataset: Distribution of images by class

Type Training set Test set Validation set Total
Glass 354 82 65 501
Paper 403 108 83 594

Cardboard 287 70 46 403
Plastic 347 74 61 482
Metal 286 68 56 410
Trash 91 29 17 137
Total 1,768 431 328 2,527

4.2. Experiments and results. LitterNets, the proposed ensemble of CNN-ELM mod-
els for automatic waste classification, and the models themselves were implemented using
TensorFlow [19] and the Keras library [20]. The TrashNet test set was used to evaluate
the accuracy of LitterNets and CNN-ELM models in identifying the six different waste
classes. The pre-trained CNN’s lower layers were frozen and used a feature extractor, but
the classification layer was removed and replaced with an extreme learning machine hav-
ing six output neurons in the output layer. The feature extraction layers did not get any
additional training or fine-tuning. The dimension of all images in the TrashNet dataset
was reduced to 224 × 224 to match the usual input image size of models trained on the
ImageNet dataset [21]. To assess the performance of LitterNets, two experimental setups
were conducted. The first setup entails training seven different CNN-ELMs and evaluat-
ing the effect of the pre-trained CNNs on the hybrid network’s performance. The second
setup aims to evaluate the impact of the different design choices in creating an ensemble
of CNN-ELM models.

Table 2 shows the seven pre-trained CNNs used in this study, the network architecture
of the single-layer ELMs, the time it took to train each CNN-ELM model using 1,768
images in the train set, and the time it took to evaluate each trained CNN-ELM using
the test set containing 431 images. Each CNN-ELM model was trained in about two
minutes, and each of the trained models was evaluated within twenty-one seconds using
the test images. These findings show that the CNN-ELM architecture, which combines
transfer learning with the extreme learning machine training algorithm, can significantly
lower training time.

The performance of the seven CNN-ELM models and quantitative data obtained from
the initial experimental setup using the evaluation metrics are presented in Table 3. The
ResNet101-ELM model was by far the most effective, while the VGG16-ELM model was
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Table 2. The different CNN-ELM models, together with their associated
training and test times

CNN
ELM Training time

(in seconds)
Test time

(in seconds)Input Hidden Output
VGG16 25,088 100 6 54 13
VGG19 25,088 100 6 56 14
ResNet50 100,352 100 6 63 15
ResNet101 100,352 100 6 75 18
ResNet152 100,352 100 6 85 21

DenseNet121 50,176 100 6 72 18
DenseNet169 81,536 100 6 85 21

Table 3. The performance of the different CNN-ELM models using the
evaluation metrics

CNN-ELM model Accuracy Precision Recall F1-score
Performance

ranking
VGG16-ELM 79.81% 80.83% 77.11% 78.93% 7
VGG19-ELM 80.28% 79.37% 76.42% 77.86% 6
ResNet50-ELM 91.42% 91.37% 89.28% 90.31% 3
ResNet101-ELM 92.11% 92.19% 89.50% 90.83% 1
ResNet152-ELM 90.26% 90.30% 88.98% 89.63% 4

DensetNet121-ELM 86.54% 86.12% 84.04% 85.07% 5
DensetNet169-ELM 91.42% 91.48% 90.40% 90.94% 2

Table 4. The LitterNets models

3 CNN-ELMs
Training
time

5 CNN-ELMs
Training
time

7 CNN-ELMs
Training
time

ResNet101-ELM 75 ResNet101-ELM 75 ResNet101-ELM 75
DenseNet169-ELM 85 DenseNet169-ELM 85 DenseNet169-ELM 85
ResNet50-ELM 63 ResNet50-ELM 63 ResNet50-ELM 63

ResNet152-ELM 85 ResNet152-ELM 85
DenseNet121-ELM 72 DenseNet121-ELM 72

VGG19-ELM 56
VGG16-ELM 54

Total training time 223 380 490

the least accurate. Despite having the same number of hidden and output neurons in
their ELM network architecture, the performance of the CNN-ELM models differs. This
performance variation can be attributed to the number of features generated by the feature
extraction layer, with more features resulting in better performance. For example, the
lowest three CNN-ELM models have fewer input features than the top three CNN-ELM
models. Based on these results, the CNN-ELM model’s performance is dependent on the
number of input features used, and the more features, the more accurate the prediction,
but each additional feature increases the training time and computational cost. It can
also be observed that the hybrid model is effective even though the dataset is imbalanced,
given that there are significantly fewer trash samples.
The three variants of LitterNets are shown in Table 4. The LitterNets model with three

CNN-ELMs combined the top three most accurate trained models. The LitterNets model
with five CNN-ELMs was a combination of the first five CNN-ELM models, whereas the
LitterNets model with seven CNN-ELMs included all of the trained CNN-ELM models.
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It can be observed that the total training time increases as more CNN-ELM models are
added to the LitterNets model.

The results of the second experimental setup, which aimed to validate the performance
of LitterNets, an ensemble of CNN-ELM models, are shown in Table 5. The quantitative
data obtained in the experiments reveal that all of the LitterNets models outperformed
individual CNN-ELM models in terms of accuracy. Among the three LitterNets variants
tested, the LitterNets variant with five CNN-ELMs achieved the best accuracy rate of
93.97%. Furthermore, the LitterNets models with three CNN-ELM models and five CNN-
ELM models outperformed the LitterNets variant with seven CNN-ELM models. Based
on these results, finding a good combination of heterogeneous CNN-ELM models is tricky
because adding more models to the ensemble does not always improve performance but
it increases the training time of the ensemble.

Table 5. The performance of the LitterNets models using the evaluation metrics

LitterNets model Accuracy Precision Recall F1-score
Test time
per image

(in seconds)
3 CNN-ELMs 93.50% 93.96% 91.39% 92.66% 0.125
5 CNN-ELMs 93.97% 94.37% 92.23% 93.29% 0.211
7 CNN-ELMs 93.27% 93.74% 91.28% 92.49% 0.269

Finally, Table 6 compares the results of several models that used the TrashNet dataset.
Except for LitterNets, previous research works require many epochs to train and fine-tune
their models and each epoch requires several seconds to complete. On the other hand,
each CNN-ELM model in LitterNets is trained in a single epoch, and it still achieved
excellent performance.

Table 6. A comparison of the different models that used the TrashNet dataset

Author Model used Epochs Accuracy

Ruiz et al. [5] Inception-ResNet model ∼ 55 88.66%

Bircanoglu et al. [2] DenseNet121 10 + 200 95.00%

Bircanoglu et al. [2] InceptionResNetV2 10 + 200 87.00%

Bircanoglu et al. [2] RecycleNet 200 81.00%

Aral et al. [7] InceptionV4 7 + 120 94.00%

Aral et al. [7] DenseNet169 7 + 120 95.00%

Aral et al. [7] DenseNet121 10 + 100 95.00%

Aral et al. [7] InceptionV4 10 + 200 89.00%

Aral et al. [7] MobileNet 10 + 200 84.00%

Best proposed model LitterNets: 5 CNN-ELMs 1 + 1 + 1 + 1 + 1 93.97%

5. Conclusions. This paper introduced LitterNets, an ensemble of CNN-ELM models
for automatic waste classification. LitterNets was trained on a single epoch, which resulted
in a substantial reduction in training time. Furthermore, even though no data augmenta-
tion techniques were utilized during the training process, the proposed model had a simi-
lar performance to those obtained by existing state-of-the-art waste classification models.
Most significantly, this paper demonstrated a simple and effective technique for increasing
accuracy that leverages on the pre-trained CNNs as feature extractors, employs extreme
learning machines for the classification layer, and combines multiple trained CNN-ELM
models. Future research directions include extending the LitterNets framework to classify
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and recognize other objects, as well as investigating different methodologies and estab-
lishing a criterion for model selection when constructing an ensemble architecture in order
to combine the base models more effectively.
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